serial_debugger/hardware/sd_card_formatter/src/SdFat/SdCard/SdioCard.h

304 lines
11 KiB
C++

/**
* Copyright (c) 2011-2018 Bill Greiman
* This file is part of the SdFat library for SD memory cards.
*
* MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef SdioCard_h
#define SdioCard_h
#include "../SysCall.h"
#include "../BlockDriver.h"
/**
* \class SdioCard
* \brief Raw SDIO access to SD and SDHC flash memory cards.
*/
class SdioCard : public BaseBlockDriver {
public:
/** Initialize the SD card.
* \return true for success else false.
*/
bool begin();
/**
* Determine the size of an SD flash memory card.
*
* \return The number of 512 byte sectors in the card
* or zero if an error occurs.
*/
uint32_t cardCapacity();
/** \return Card size in sectors or zero if an error occurs. */
uint32_t cardSize() {return cardCapacity();}
/** Erase a range of blocks.
*
* \param[in] firstBlock The address of the first block in the range.
* \param[in] lastBlock The address of the last block in the range.
*
* \note This function requests the SD card to do a flash erase for a
* range of blocks. The data on the card after an erase operation is
* either 0 or 1, depends on the card vendor. The card must support
* single block erase.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool erase(uint32_t firstBlock, uint32_t lastBlock);
/**
* \return code for the last error. See SdInfo.h for a list of error codes.
*/
uint8_t errorCode();
/** \return error data for last error. */
uint32_t errorData();
/** \return error line for last error. Tmp function for debug. */
uint32_t errorLine();
/**
* Check for busy with CMD13.
*
* \return true if busy else false.
*/
bool isBusy();
/** \return the SD clock frequency in kHz. */
uint32_t kHzSdClk();
/**
* Read a 512 byte block from an SD card.
*
* \param[in] lba Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readBlock(uint32_t lba, uint8_t* dst);
/**
* Read multiple 512 byte blocks from an SD card.
*
* \param[in] lba Logical block to be read.
* \param[in] nb Number of blocks to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readBlocks(uint32_t lba, uint8_t* dst, size_t nb);
/**
* Read a card's CID register. The CID contains card identification
* information such as Manufacturer ID, Product name, Product serial
* number and Manufacturing date.
*
* \param[out] cid pointer to area for returned data.
*
* \return true for success or false for failure.
*/
bool readCID(void* cid);
/**
* Read a card's CSD register. The CSD contains Card-Specific Data that
* provides information regarding access to the card's contents.
*
* \param[out] csd pointer to area for returned data.
*
* \return true for success or false for failure.
*/
bool readCSD(void* csd);
/** Read one data block in a multiple block read sequence
*
* \param[out] dst Pointer to the location for the data to be read.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readData(uint8_t *dst);
/** Read OCR register.
*
* \param[out] ocr Value of OCR register.
* \return true for success else false.
*/
bool readOCR(uint32_t* ocr);
/** Start a read multiple blocks sequence.
*
* \param[in] lba Address of first block in sequence.
*
* \note This function is used with readData() and readStop() for optimized
* multiple block reads. SPI chipSelect must be low for the entire sequence.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readStart(uint32_t lba);
/** Start a read multiple blocks sequence.
*
* \param[in] lba Address of first block in sequence.
* \param[in] count Maximum block count.
* \note This function is used with readData() and readStop() for optimized
* multiple block reads. SPI chipSelect must be low for the entire sequence.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readStart(uint32_t lba, uint32_t count);
/** End a read multiple blocks sequence.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readStop();
/** \return success if sync successful. Not for user apps. */
bool syncBlocks();
/** Return the card type: SD V1, SD V2 or SDHC
* \return 0 - SD V1, 1 - SD V2, or 3 - SDHC.
*/
uint8_t type();
/**
* Writes a 512 byte block to an SD card.
*
* \param[in] lba Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeBlock(uint32_t lba, const uint8_t* src);
/**
* Write multiple 512 byte blocks to an SD card.
*
* \param[in] lba Logical block to be written.
* \param[in] nb Number of blocks to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeBlocks(uint32_t lba, const uint8_t* src, size_t nb);
/** Write one data block in a multiple block write sequence.
* \param[in] src Pointer to the location of the data to be written.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeData(const uint8_t* src);
/** Start a write multiple blocks sequence.
*
* \param[in] lba Address of first block in sequence.
*
* \note This function is used with writeData() and writeStop()
* for optimized multiple block writes.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeStart(uint32_t lba);
/** Start a write multiple blocks sequence.
*
* \param[in] lba Address of first block in sequence.
* \param[in] count Maximum block count.
* \note This function is used with writeData() and writeStop()
* for optimized multiple block writes.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeStart(uint32_t lba, uint32_t count);
/** End a write multiple blocks sequence.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeStop();
};
//==============================================================================
/**
* \class SdioCardEX
* \brief Extended SD I/O block driver.
*/
class SdioCardEX : public SdioCard {
public:
/** Initialize the SD card
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool begin() {
m_curState = IDLE_STATE;
return SdioCard::begin();
}
/** Erase a range of blocks.
*
* \param[in] firstBlock The address of the first block in the range.
* \param[in] lastBlock The address of the last block in the range.
*
* \note This function requests the SD card to do a flash erase for a
* range of blocks. The data on the card after an erase operation is
* either 0 or 1, depends on the card vendor. The card must support
* single block erase.
*
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool erase(uint32_t firstBlock, uint32_t lastBlock) {
return syncBlocks() && SdioCard::erase(firstBlock, lastBlock);
}
/**
* Read a 512 byte block from an SD card.
*
* \param[in] block Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readBlock(uint32_t block, uint8_t* dst);
/** End multi-block transfer and go to idle state.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool syncBlocks();
/**
* Writes a 512 byte block to an SD card.
*
* \param[in] block Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeBlock(uint32_t block, const uint8_t* src);
/**
* Read multiple 512 byte blocks from an SD card.
*
* \param[in] block Logical block to be read.
* \param[in] nb Number of blocks to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool readBlocks(uint32_t block, uint8_t* dst, size_t nb);
/**
* Write multiple 512 byte blocks to an SD card.
*
* \param[in] block Logical block to be written.
* \param[in] nb Number of blocks to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value true is returned for success and
* the value false is returned for failure.
*/
bool writeBlocks(uint32_t block, const uint8_t* src, size_t nb);
private:
static const uint32_t IDLE_STATE = 0;
static const uint32_t READ_STATE = 1;
static const uint32_t WRITE_STATE = 2;
uint32_t m_curLba;
uint32_t m_limitLba;
uint8_t m_curState;
};
#endif // SdioCard_h