1200 lines
38 KiB
C++
1200 lines
38 KiB
C++
/* Arduino Sd2Card Library
|
|
* Copyright (C) 2012 by William Greiman
|
|
*
|
|
* This file is part of the Arduino Sd2Card Library
|
|
*
|
|
* This Library is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This Library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with the Arduino Sd2Card Library. If not, see
|
|
* <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <Sd2Card.h>
|
|
// debug trace macro
|
|
#define SD_TRACE(m, b)
|
|
// #define SD_TRACE(m, b) Serial.print(m);Serial.println(b);
|
|
|
|
// SPI functions
|
|
//==============================================================================
|
|
#if USE_ARDUINO_SPI_LIBRARY
|
|
#include <SPI.h>
|
|
//------------------------------------------------------------------------------
|
|
static void spiBegin() {
|
|
SPI.begin();
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
static void spiInit(uint8_t spiRate) {
|
|
SPI.setBitOrder(MSBFIRST);
|
|
SPI.setDataMode(SPI_MODE0);
|
|
int v;
|
|
#ifdef SPI_CLOCK_DIV128
|
|
switch (spiRate/2) {
|
|
case 0: v = SPI_CLOCK_DIV2; break;
|
|
case 1: v = SPI_CLOCK_DIV4; break;
|
|
case 2: v = SPI_CLOCK_DIV8; break;
|
|
case 3: v = SPI_CLOCK_DIV16; break;
|
|
case 4: v = SPI_CLOCK_DIV32; break;
|
|
case 5: v = SPI_CLOCK_DIV64; break;
|
|
default: v = SPI_CLOCK_DIV128; break;
|
|
}
|
|
#else // SPI_CLOCK_DIV128
|
|
if (spiRate > 13) {
|
|
v = 255;
|
|
} else {
|
|
v = (2 | (spiRate & 1)) << (spiRate/2);
|
|
}
|
|
#endif // SPI_CLOCK_DIV128
|
|
SPI.setClockDivider(v);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive a byte */
|
|
static uint8_t spiRec() {
|
|
return SPI.transfer(0XFF);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive multiple bytes */
|
|
static uint8_t spiRec(uint8_t* buf, size_t len) {
|
|
for (size_t i = 0; i < len; i++) {
|
|
buf[i] = SPI.transfer(0XFF);
|
|
}
|
|
return 0;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI send a byte */
|
|
static void spiSend(uint8_t b) {
|
|
SPI.transfer(b);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI send multiple bytes */
|
|
static void spiSend(const uint8_t* buf, size_t len) {
|
|
for (size_t i = 0; i < len; i++) {
|
|
SPI.transfer(buf[i]);
|
|
}
|
|
}
|
|
//==============================================================================
|
|
#elif USE_NATIVE_SAM3X_SPI
|
|
/** Use SAM3X DMAC if nonzero */
|
|
#define USE_SAM3X_DMAC 1
|
|
/** Use extra Bus Matrix arbitration fix if nonzero */
|
|
#define USE_SAM3X_BUS_MATRIX_FIX 0
|
|
/** Time in ms for DMA receive timeout */
|
|
#define SAM3X_DMA_TIMEOUT 100
|
|
/** chip select register number */
|
|
#define SPI_CHIP_SEL 3
|
|
/** DMAC receive channel */
|
|
#define SPI_DMAC_RX_CH 1
|
|
/** DMAC transmit channel */
|
|
#define SPI_DMAC_TX_CH 0
|
|
/** DMAC Channel HW Interface Number for SPI TX. */
|
|
#define SPI_TX_IDX 1
|
|
/** DMAC Channel HW Interface Number for SPI RX. */
|
|
#define SPI_RX_IDX 2
|
|
//------------------------------------------------------------------------------
|
|
/** Disable DMA Controller. */
|
|
static void dmac_disable() {
|
|
DMAC->DMAC_EN &= (~DMAC_EN_ENABLE);
|
|
}
|
|
/** Enable DMA Controller. */
|
|
static void dmac_enable() {
|
|
DMAC->DMAC_EN = DMAC_EN_ENABLE;
|
|
}
|
|
/** Disable DMA Channel. */
|
|
static void dmac_channel_disable(uint32_t ul_num) {
|
|
DMAC->DMAC_CHDR = DMAC_CHDR_DIS0 << ul_num;
|
|
}
|
|
/** Enable DMA Channel. */
|
|
static void dmac_channel_enable(uint32_t ul_num) {
|
|
DMAC->DMAC_CHER = DMAC_CHER_ENA0 << ul_num;
|
|
}
|
|
/** Poll for transfer complete. */
|
|
static bool dmac_channel_transfer_done(uint32_t ul_num) {
|
|
return (DMAC->DMAC_CHSR & (DMAC_CHSR_ENA0 << ul_num)) ? false : true;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
static void spiBegin() {
|
|
PIO_Configure(
|
|
g_APinDescription[PIN_SPI_MOSI].pPort,
|
|
g_APinDescription[PIN_SPI_MOSI].ulPinType,
|
|
g_APinDescription[PIN_SPI_MOSI].ulPin,
|
|
g_APinDescription[PIN_SPI_MOSI].ulPinConfiguration);
|
|
PIO_Configure(
|
|
g_APinDescription[PIN_SPI_MISO].pPort,
|
|
g_APinDescription[PIN_SPI_MISO].ulPinType,
|
|
g_APinDescription[PIN_SPI_MISO].ulPin,
|
|
g_APinDescription[PIN_SPI_MISO].ulPinConfiguration);
|
|
PIO_Configure(
|
|
g_APinDescription[PIN_SPI_SCK].pPort,
|
|
g_APinDescription[PIN_SPI_SCK].ulPinType,
|
|
g_APinDescription[PIN_SPI_SCK].ulPin,
|
|
g_APinDescription[PIN_SPI_SCK].ulPinConfiguration);
|
|
pmc_enable_periph_clk(ID_SPI0);
|
|
#if USE_SAM3X_DMAC
|
|
pmc_enable_periph_clk(ID_DMAC);
|
|
dmac_disable();
|
|
DMAC->DMAC_GCFG = DMAC_GCFG_ARB_CFG_FIXED;
|
|
dmac_enable();
|
|
#if USE_SAM3X_BUS_MATRIX_FIX
|
|
MATRIX->MATRIX_WPMR = 0x4d415400;
|
|
MATRIX->MATRIX_MCFG[1] = 1;
|
|
MATRIX->MATRIX_MCFG[2] = 1;
|
|
MATRIX->MATRIX_SCFG[0] = 0x01000010;
|
|
MATRIX->MATRIX_SCFG[1] = 0x01000010;
|
|
MATRIX->MATRIX_SCFG[7] = 0x01000010;
|
|
#endif // USE_SAM3X_BUS_MATRIX_FIX
|
|
#endif // USE_SAM3X_DMAC
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
// start RX DMA
|
|
void spiDmaRX(uint8_t* dst, uint16_t count) {
|
|
dmac_channel_disable(SPI_DMAC_RX_CH);
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_SADDR = (uint32_t)&SPI0->SPI_RDR;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_DADDR = (uint32_t)dst;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_DSCR = 0;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CTRLA = count |
|
|
DMAC_CTRLA_SRC_WIDTH_BYTE | DMAC_CTRLA_DST_WIDTH_BYTE;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CTRLB = DMAC_CTRLB_SRC_DSCR |
|
|
DMAC_CTRLB_DST_DSCR | DMAC_CTRLB_FC_PER2MEM_DMA_FC |
|
|
DMAC_CTRLB_SRC_INCR_FIXED | DMAC_CTRLB_DST_INCR_INCREMENTING;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CFG = DMAC_CFG_SRC_PER(SPI_RX_IDX) |
|
|
DMAC_CFG_SRC_H2SEL | DMAC_CFG_SOD | DMAC_CFG_FIFOCFG_ASAP_CFG;
|
|
dmac_channel_enable(SPI_DMAC_RX_CH);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
// start TX DMA
|
|
void spiDmaTX(const uint8_t* src, uint16_t count) {
|
|
static uint8_t ff = 0XFF;
|
|
uint32_t src_incr = DMAC_CTRLB_SRC_INCR_INCREMENTING;
|
|
if (!src) {
|
|
src = &ff;
|
|
src_incr = DMAC_CTRLB_SRC_INCR_FIXED;
|
|
}
|
|
dmac_channel_disable(SPI_DMAC_TX_CH);
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_SADDR = (uint32_t)src;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_DADDR = (uint32_t)&SPI0->SPI_TDR;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_DSCR = 0;
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CTRLA = count |
|
|
DMAC_CTRLA_SRC_WIDTH_BYTE | DMAC_CTRLA_DST_WIDTH_BYTE;
|
|
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CTRLB = DMAC_CTRLB_SRC_DSCR |
|
|
DMAC_CTRLB_DST_DSCR | DMAC_CTRLB_FC_MEM2PER_DMA_FC |
|
|
src_incr | DMAC_CTRLB_DST_INCR_FIXED;
|
|
|
|
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CFG = DMAC_CFG_DST_PER(SPI_TX_IDX) |
|
|
DMAC_CFG_DST_H2SEL | DMAC_CFG_SOD | DMAC_CFG_FIFOCFG_ALAP_CFG;
|
|
|
|
dmac_channel_enable(SPI_DMAC_TX_CH);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
// initialize SPI controller
|
|
static void spiInit(uint8_t spiRate) {
|
|
Spi* pSpi = SPI0;
|
|
uint8_t scbr = 255;
|
|
if (spiRate < 14) {
|
|
scbr = (2 | (spiRate & 1)) << (spiRate/2);
|
|
}
|
|
// disable SPI
|
|
pSpi->SPI_CR = SPI_CR_SPIDIS;
|
|
// reset SPI
|
|
pSpi->SPI_CR = SPI_CR_SWRST;
|
|
// no mode fault detection, set master mode
|
|
pSpi->SPI_MR = SPI_PCS(SPI_CHIP_SEL) | SPI_MR_MODFDIS | SPI_MR_MSTR;
|
|
// mode 0, 8-bit,
|
|
pSpi->SPI_CSR[SPI_CHIP_SEL] = SPI_CSR_SCBR(scbr) | SPI_CSR_NCPHA;
|
|
// enable SPI
|
|
pSpi->SPI_CR |= SPI_CR_SPIEN;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
static inline uint8_t spiTransfer(uint8_t b) {
|
|
Spi* pSpi = SPI0;
|
|
|
|
pSpi->SPI_TDR = b;
|
|
while ((pSpi->SPI_SR & SPI_SR_RDRF) == 0) {}
|
|
b = pSpi->SPI_RDR;
|
|
return b;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive a byte */
|
|
static inline uint8_t spiRec() {
|
|
return spiTransfer(0XFF);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive multiple bytes */
|
|
static uint8_t spiRec(uint8_t* buf, size_t len) {
|
|
Spi* pSpi = SPI0;
|
|
int rtn = 0;
|
|
#if USE_SAM3X_DMAC
|
|
// clear overrun error
|
|
uint32_t s = pSpi->SPI_SR;
|
|
|
|
spiDmaRX(buf, len);
|
|
spiDmaTX(0, len);
|
|
|
|
uint32_t m = millis();
|
|
while (!dmac_channel_transfer_done(SPI_DMAC_RX_CH)) {
|
|
if ((millis() - m) > SAM3X_DMA_TIMEOUT) {
|
|
dmac_channel_disable(SPI_DMAC_RX_CH);
|
|
dmac_channel_disable(SPI_DMAC_TX_CH);
|
|
rtn = 2;
|
|
break;
|
|
}
|
|
}
|
|
if (pSpi->SPI_SR & SPI_SR_OVRES) rtn |= 1;
|
|
#else // USE_SAM3X_DMAC
|
|
for (size_t i = 0; i < len; i++) {
|
|
pSpi->SPI_TDR = 0XFF;
|
|
while ((pSpi->SPI_SR & SPI_SR_RDRF) == 0) {}
|
|
buf[i] = pSpi->SPI_RDR;
|
|
}
|
|
#endif // USE_SAM3X_DMAC
|
|
return rtn;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI send a byte */
|
|
static inline void spiSend(uint8_t b) {
|
|
spiTransfer(b);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
static void spiSend(const uint8_t* buf, size_t len) {
|
|
Spi* pSpi = SPI0;
|
|
#if USE_SAM3X_DMAC
|
|
spiDmaTX(buf, len);
|
|
while (!dmac_channel_transfer_done(SPI_DMAC_TX_CH)) {}
|
|
#else // #if USE_SAM3X_DMAC
|
|
while ((pSpi->SPI_SR & SPI_SR_TXEMPTY) == 0) {}
|
|
for (size_t i = 0; i < len; i++) {
|
|
pSpi->SPI_TDR = buf[i];
|
|
while ((pSpi->SPI_SR & SPI_SR_TDRE) == 0) {}
|
|
}
|
|
#endif // #if USE_SAM3X_DMAC
|
|
while ((pSpi->SPI_SR & SPI_SR_TXEMPTY) == 0) {}
|
|
// leave RDR empty
|
|
uint8_t b = pSpi->SPI_RDR;
|
|
}
|
|
//==============================================================================
|
|
#elif USE_NATIVE_MK20DX128_SPI
|
|
// Teensy 3.0 functions
|
|
#include <mk20dx128.h>
|
|
// use 16-bit frame if SPI_USE_8BIT_FRAME is zero
|
|
#define SPI_USE_8BIT_FRAME 0
|
|
// Limit initial fifo to three entries to avoid fifo overrun
|
|
#define SPI_INITIAL_FIFO_DEPTH 3
|
|
// define some symbols that are not in mk20dx128.h
|
|
#ifndef SPI_SR_RXCTR
|
|
#define SPI_SR_RXCTR 0XF0
|
|
#endif // SPI_SR_RXCTR
|
|
#ifndef SPI_PUSHR_CONT
|
|
#define SPI_PUSHR_CONT 0X80000000
|
|
#endif // SPI_PUSHR_CONT
|
|
#ifndef SPI_PUSHR_CTAS
|
|
#define SPI_PUSHR_CTAS(n) (((n) & 7) << 28)
|
|
#endif // SPI_PUSHR_CTAS
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* initialize SPI pins
|
|
*/
|
|
static void spiBegin() {
|
|
// dummy - all is done in spiInit()
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Initialize hardware SPI
|
|
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
|
|
*/
|
|
static void spiInit(uint8_t spiRate) {
|
|
SIM_SCGC6 |= SIM_SCGC6_SPI0;
|
|
SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT;
|
|
// spiRate = 0 or 1 : 24 or 12 Mbit/sec
|
|
// spiRate = 2 or 3 : 12 or 6 Mbit/sec
|
|
// spiRate = 4 or 5 : 6 or 3 Mbit/sec
|
|
// spiRate = 6 or 7 : 3 or 1.5 Mbit/sec
|
|
// spiRate = 8 or 9 : 1.5 or 0.75 Mbit/sec
|
|
// spiRate = 10 or 11 : 250 kbit/sec
|
|
// spiRate = 12 or more : 125 kbit/sec
|
|
uint32_t ctar;
|
|
switch (spiRate/2) {
|
|
case 0: ctar = SPI_CTAR_DBR | SPI_CTAR_BR(0); break;
|
|
case 1: ctar = SPI_CTAR_BR(0); break;
|
|
case 2: ctar = SPI_CTAR_BR(1); break;
|
|
case 3: ctar = SPI_CTAR_BR(2); break;
|
|
case 4: ctar = SPI_CTAR_BR(3); break;
|
|
#if F_BUS == 48000000
|
|
case 5: ctar = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5); break;
|
|
default: ctar = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6);
|
|
#elif F_BUS == 24000000
|
|
case 5: ctar = SPI_CTAR_PBR(1) | SPI_CTAR_BR(4); break;
|
|
default: ctar = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5);
|
|
#else
|
|
#error "MK20DX128 bus frequency must be 48 or 24 MHz"
|
|
#endif
|
|
}
|
|
// CTAR0 - 8 bit transfer
|
|
SPI0_CTAR0 = ctar | SPI_CTAR_FMSZ(7);
|
|
// CTAR1 - 16 bit transfer
|
|
SPI0_CTAR1 = ctar | SPI_CTAR_FMSZ(15);
|
|
SPI0_MCR = SPI_MCR_MSTR;
|
|
CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
CORE_PIN12_CONFIG = PORT_PCR_MUX(2);
|
|
CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive a byte */
|
|
static uint8_t spiRec() {
|
|
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF;
|
|
SPI0_PUSHR = 0xFF;
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
return SPI0_POPR;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive multiple bytes */
|
|
static uint8_t spiRec(uint8_t* buf, size_t len) {
|
|
// clear any data in RX FIFO
|
|
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF;
|
|
#if SPI_USE_8BIT_FRAME
|
|
// initial number of bytes to push into TX FIFO
|
|
int nf = len < SPI_INITIAL_FIFO_DEPTH ? len : SPI_INITIAL_FIFO_DEPTH;
|
|
for (int i = 0; i < nf; i++) {
|
|
SPI0_PUSHR = 0XFF;
|
|
}
|
|
// limit for pushing dummy data into TX FIFO
|
|
uint8_t* limit = buf + len - nf;
|
|
while (buf < limit) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_PUSHR = 0XFF;
|
|
*buf++ = SPI0_POPR;
|
|
}
|
|
// limit for rest of RX data
|
|
limit += nf;
|
|
while (buf < limit) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
*buf++ = SPI0_POPR;
|
|
}
|
|
#else // SPI_USE_8BIT_FRAME
|
|
// use 16 bit frame to avoid TD delay between frames
|
|
// get one byte if len is odd
|
|
if (len & 1) {
|
|
*buf++ = spiRec();
|
|
len--;
|
|
}
|
|
// initial number of words to push into TX FIFO
|
|
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
|
|
for (int i = 0; i < nf; i++) {
|
|
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
|
|
}
|
|
uint8_t* limit = buf + len - 2*nf;
|
|
while (buf < limit) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | 0XFFFF;
|
|
uint16_t w = SPI0_POPR;
|
|
*buf++ = w >> 8;
|
|
*buf++ = w & 0XFF;
|
|
}
|
|
// limit for rest of RX data
|
|
limit += 2*nf;
|
|
while (buf < limit) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
uint16_t w = SPI0_POPR;
|
|
*buf++ = w >> 8;
|
|
*buf++ = w & 0XFF;
|
|
}
|
|
#endif // SPI_USE_8BIT_FRAME
|
|
return 0;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI send a byte */
|
|
static void spiSend(uint8_t b) {
|
|
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF;
|
|
SPI0_PUSHR = b;
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_POPR; // not required?
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI send multiple bytes */
|
|
static void spiSend(const uint8_t* output, size_t len) {
|
|
// clear any data in RX FIFO
|
|
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF;
|
|
#if SPI_USE_8BIT_FRAME
|
|
// initial number of bytes to push into TX FIFO
|
|
int nf = len < SPI_INITIAL_FIFO_DEPTH ? len : SPI_INITIAL_FIFO_DEPTH;
|
|
// limit for pushing data into TX fifo
|
|
const uint8_t* limit = output + len;
|
|
for (int i = 0; i < nf; i++) {
|
|
SPI0_PUSHR = *output++;
|
|
}
|
|
// write data to TX FIFO
|
|
while (output < limit) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_PUSHR = *output++;
|
|
SPI0_POPR;
|
|
}
|
|
// wait for data to be sent
|
|
while (nf) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_POPR;
|
|
nf--;
|
|
}
|
|
#else // SPI_USE_8BIT_FRAME
|
|
// use 16 bit frame to avoid TD delay between frames
|
|
// send one byte if len is odd
|
|
if (len & 1) {
|
|
spiSend(*output++);
|
|
len--;
|
|
}
|
|
// initial number of words to push into TX FIFO
|
|
int nf = len/2 < SPI_INITIAL_FIFO_DEPTH ? len/2 : SPI_INITIAL_FIFO_DEPTH;
|
|
// limit for pushing data into TX fifo
|
|
const uint8_t* limit = output + len;
|
|
for (int i = 0; i < nf; i++) {
|
|
uint16_t w = (*output++) << 8;
|
|
w |= *output++;
|
|
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | w;
|
|
}
|
|
// write data to TX FIFO
|
|
while (output < limit) {
|
|
uint16_t w = *output++ << 8;
|
|
w |= *output++;
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | w;
|
|
SPI0_POPR;
|
|
}
|
|
// wait for data to be sent
|
|
while (nf) {
|
|
while (!(SPI0_SR & SPI_SR_RXCTR)) {}
|
|
SPI0_POPR;
|
|
nf--;
|
|
}
|
|
#endif // SPI_USE_8BIT_FRAME
|
|
}
|
|
//==============================================================================
|
|
#elif defined(SOFTWARE_SPI)
|
|
#include <SoftSPI.h>
|
|
static
|
|
SoftSPI<SOFT_SPI_MISO_PIN, SOFT_SPI_MOSI_PIN, SOFT_SPI_SCK_PIN, 0> softSpiBus;
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* initialize SPI pins
|
|
*/
|
|
static void spiBegin() {
|
|
softSpiBus.begin();
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Initialize hardware SPI - dummy for soft SPI
|
|
*/
|
|
static void spiInit(uint8_t spiRate) {}
|
|
//------------------------------------------------------------------------------
|
|
/** Soft SPI receive byte */
|
|
static uint8_t spiRec() {
|
|
return softSpiBus.receive();
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Soft SPI read data */
|
|
static uint8_t spiRec(uint8_t* buf, size_t n) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
buf[i] = spiRec();
|
|
}
|
|
return 0;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Soft SPI send byte */
|
|
static void spiSend(uint8_t data) {
|
|
softSpiBus.send(data);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
static void spiSend(const uint8_t* buf, size_t n) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
spiSend(buf[i]);
|
|
}
|
|
}
|
|
//==============================================================================
|
|
#else
|
|
// functions for AVR hardware SPI
|
|
//------------------------------------------------------------------------------
|
|
// make sure SPCR rate is in expected bits
|
|
#if (SPR0 != 0 || SPR1 != 1)
|
|
#error unexpected SPCR bits
|
|
#endif
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* initialize SPI pins
|
|
*/
|
|
static void spiBegin() {
|
|
// set SS high - may be chip select for another SPI device
|
|
digitalWrite(SS, HIGH);
|
|
// SS must be in output mode even it is not chip select
|
|
pinMode(SS, OUTPUT);
|
|
pinMode(MISO, INPUT);
|
|
pinMode(MOSI, OUTPUT);
|
|
pinMode(SCK, OUTPUT);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Initialize hardware SPI
|
|
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
|
|
*/
|
|
static void spiInit(uint8_t spiRate) {
|
|
spiRate = spiRate > 12 ? 6 : spiRate/2;
|
|
// See avr processor documentation
|
|
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
|
|
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive a byte */
|
|
static uint8_t spiRec() {
|
|
SPDR = 0XFF;
|
|
while (!(SPSR & (1 << SPIF)));
|
|
return SPDR;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI receive multiple bytes */
|
|
static uint8_t spiRec(uint8_t* buf, size_t n) {
|
|
if (n-- == 0) return 0;
|
|
SPDR = 0XFF;
|
|
for (size_t i = 0; i < n; i++) {
|
|
while (!(SPSR & (1 << SPIF)));
|
|
uint8_t b = SPDR;
|
|
SPDR = 0XFF;
|
|
buf[i] = b;
|
|
}
|
|
while (!(SPSR & (1 << SPIF)));
|
|
buf[n] = SPDR;
|
|
return 0;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** SPI send a byte */
|
|
static void spiSend(uint8_t b) {
|
|
SPDR = b;
|
|
while (!(SPSR & (1 << SPIF)));
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
static void spiSend(const uint8_t* buf , size_t n) {
|
|
if (n == 0) return;
|
|
SPDR = buf[0];
|
|
if (n > 1) {
|
|
uint8_t b = buf[1];
|
|
size_t i = 2;
|
|
while (1) {
|
|
while (!(SPSR & (1 << SPIF)));
|
|
SPDR = b;
|
|
if (i == n) break;
|
|
b = buf[i++];
|
|
}
|
|
}
|
|
while (!(SPSR & (1 << SPIF)));
|
|
}
|
|
#endif // SOFTWARE_SPI
|
|
//==============================================================================
|
|
#if USE_SD_CRC
|
|
// CRC functions
|
|
//------------------------------------------------------------------------------
|
|
static uint8_t CRC7(const uint8_t* data, uint8_t n) {
|
|
uint8_t crc = 0;
|
|
for (uint8_t i = 0; i < n; i++) {
|
|
uint8_t d = data[i];
|
|
for (uint8_t j = 0; j < 8; j++) {
|
|
crc <<= 1;
|
|
if ((d & 0x80) ^ (crc & 0x80)) crc ^= 0x09;
|
|
d <<= 1;
|
|
}
|
|
}
|
|
return (crc << 1) | 1;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
#if USE_SD_CRC == 1
|
|
// slower CRC-CCITT
|
|
// uses the x^16,x^12,x^5,x^1 polynomial.
|
|
static uint16_t CRC_CCITT(const uint8_t *data, size_t n) {
|
|
uint16_t crc = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
crc = (uint8_t)(crc >> 8) | (crc << 8);
|
|
crc ^= data[i];
|
|
crc ^= (uint8_t)(crc & 0xff) >> 4;
|
|
crc ^= crc << 12;
|
|
crc ^= (crc & 0xff) << 5;
|
|
}
|
|
return crc;
|
|
}
|
|
#elif USE_SD_CRC > 1 // CRC_CCITT
|
|
//------------------------------------------------------------------------------
|
|
// faster CRC-CCITT
|
|
// uses the x^16,x^12,x^5,x^1 polynomial.
|
|
#ifdef __AVR__
|
|
static const uint16_t crctab[] PROGMEM = {
|
|
#else // __AVR__
|
|
static const uint16_t crctab[] = {
|
|
#endif // __AVR__
|
|
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
|
|
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
|
|
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
|
|
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
|
|
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
|
|
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
|
|
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
|
|
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
|
|
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
|
|
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
|
|
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
|
|
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
|
|
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
|
|
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
|
|
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
|
|
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
|
|
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
|
|
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
|
|
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
|
|
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
|
|
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
|
|
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
|
|
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
|
|
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
|
|
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
|
|
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
|
|
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
|
|
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
|
|
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
|
|
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
|
|
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
|
|
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
|
|
};
|
|
static uint16_t CRC_CCITT(const uint8_t* data, size_t n) {
|
|
uint16_t crc = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
#ifdef __AVR__
|
|
crc = pgm_read_word(&crctab[(crc >> 8 ^ data[i]) & 0XFF]) ^ (crc << 8);
|
|
#else // __AVR__
|
|
crc = crctab[(crc >> 8 ^ data[i]) & 0XFF] ^ (crc << 8);
|
|
#endif // __AVR__
|
|
}
|
|
return crc;
|
|
}
|
|
#endif // CRC_CCITT
|
|
#endif // USE_SD_CRC
|
|
//==============================================================================
|
|
// Sd2Card member functions
|
|
//------------------------------------------------------------------------------
|
|
// send command and return error code. Return zero for OK
|
|
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
|
|
// select card
|
|
chipSelectLow();
|
|
|
|
// wait up to 300 ms if busy
|
|
waitNotBusy(300);
|
|
|
|
uint8_t *pa = reinterpret_cast<uint8_t *>(&arg);
|
|
|
|
#if USE_SD_CRC
|
|
// form message
|
|
uint8_t d[6] = {cmd | 0X40, pa[3], pa[2], pa[1], pa[0]};
|
|
|
|
// add crc
|
|
d[5] = CRC7(d, 5);
|
|
|
|
// send message
|
|
for (uint8_t k = 0; k < 6; k++) spiSend(d[k]);
|
|
#else // USE_SD_CRC
|
|
// send command
|
|
spiSend(cmd | 0x40);
|
|
|
|
// send argument
|
|
for (int8_t i = 3; i >= 0; i--) spiSend(pa[i]);
|
|
|
|
// send CRC - correct for CMD0 with arg zero or CMD8 with arg 0X1AA
|
|
spiSend(cmd == CMD0 ? 0X95 : 0X87);
|
|
#endif // USE_SD_CRC
|
|
|
|
// skip stuff byte for stop read
|
|
if (cmd == CMD12) spiRec();
|
|
|
|
// wait for response
|
|
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
|
|
return status_;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Determine the size of an SD flash memory card.
|
|
*
|
|
* \return The number of 512 byte data blocks in the card
|
|
* or zero if an error occurs.
|
|
*/
|
|
uint32_t Sd2Card::cardSize() {
|
|
csd_t csd;
|
|
if (!readCSD(&csd)) return 0;
|
|
if (csd.v1.csd_ver == 0) {
|
|
uint8_t read_bl_len = csd.v1.read_bl_len;
|
|
uint16_t c_size = (csd.v1.c_size_high << 10)
|
|
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
|
|
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
|
|
| csd.v1.c_size_mult_low;
|
|
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
|
|
} else if (csd.v2.csd_ver == 1) {
|
|
uint32_t c_size = 0X10000L * csd.v2.c_size_high + 0X100L
|
|
* (uint32_t)csd.v2.c_size_mid + csd.v2.c_size_low;
|
|
return (c_size + 1) << 10;
|
|
} else {
|
|
error(SD_CARD_ERROR_BAD_CSD);
|
|
return 0;
|
|
}
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
void Sd2Card::chipSelectHigh() {
|
|
digitalWrite(chipSelectPin_, HIGH);
|
|
// insure MISO goes high impedance
|
|
spiSend(0XFF);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
void Sd2Card::chipSelectLow() {
|
|
spiInit(spiRate_);
|
|
digitalWrite(chipSelectPin_, LOW);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Erase a range of blocks.
|
|
*
|
|
* \param[in] firstBlock The address of the first block in the range.
|
|
* \param[in] lastBlock The address of the last block in the range.
|
|
*
|
|
* \note This function requests the SD card to do a flash erase for a
|
|
* range of blocks. The data on the card after an erase operation is
|
|
* either 0 or 1, depends on the card vendor. The card must support
|
|
* single block erase.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
|
|
csd_t csd;
|
|
if (!readCSD(&csd)) goto fail;
|
|
// check for single block erase
|
|
if (!csd.v1.erase_blk_en) {
|
|
// erase size mask
|
|
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
|
|
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
|
|
// error card can't erase specified area
|
|
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
|
|
goto fail;
|
|
}
|
|
}
|
|
if (type_ != SD_CARD_TYPE_SDHC) {
|
|
firstBlock <<= 9;
|
|
lastBlock <<= 9;
|
|
}
|
|
if (cardCommand(CMD32, firstBlock)
|
|
|| cardCommand(CMD33, lastBlock)
|
|
|| cardCommand(CMD38, 0)) {
|
|
error(SD_CARD_ERROR_ERASE);
|
|
goto fail;
|
|
}
|
|
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
|
|
error(SD_CARD_ERROR_ERASE_TIMEOUT);
|
|
goto fail;
|
|
}
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Determine if card supports single block erase.
|
|
*
|
|
* \return The value one, true, is returned if single block erase is supported.
|
|
* The value zero, false, is returned if single block erase is not supported.
|
|
*/
|
|
bool Sd2Card::eraseSingleBlockEnable() {
|
|
csd_t csd;
|
|
return readCSD(&csd) ? csd.v1.erase_blk_en : false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Initialize an SD flash memory card.
|
|
*
|
|
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
|
|
* \param[in] chipSelectPin SD chip select pin number.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure. The reason for failure
|
|
* can be determined by calling errorCode() and errorData().
|
|
*/
|
|
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
|
|
errorCode_ = type_ = 0;
|
|
chipSelectPin_ = chipSelectPin;
|
|
// 16-bit init start time allows over a minute
|
|
uint16_t t0 = (uint16_t)millis();
|
|
uint32_t arg;
|
|
|
|
pinMode(chipSelectPin_, OUTPUT);
|
|
digitalWrite(chipSelectPin_, HIGH);
|
|
spiBegin();
|
|
|
|
// set SCK rate for initialization commands
|
|
spiRate_ = SPI_SD_INIT_RATE;
|
|
spiInit(spiRate_);
|
|
|
|
// must supply min of 74 clock cycles with CS high.
|
|
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
|
|
|
|
// command to go idle in SPI mode
|
|
while (cardCommand(CMD0, 0) != R1_IDLE_STATE) {
|
|
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
|
error(SD_CARD_ERROR_CMD0);
|
|
goto fail;
|
|
}
|
|
}
|
|
#if USE_SD_CRC
|
|
if (cardCommand(CMD59, 1) != R1_IDLE_STATE) {
|
|
error(SD_CARD_ERROR_CMD59);
|
|
goto fail;
|
|
}
|
|
#endif // USE_SD_CRC
|
|
// check SD version
|
|
while (1) {
|
|
if (cardCommand(CMD8, 0x1AA) == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE)) {
|
|
type(SD_CARD_TYPE_SD1);
|
|
break;
|
|
}
|
|
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
|
|
if (status_ == 0XAA) {
|
|
type(SD_CARD_TYPE_SD2);
|
|
break;
|
|
}
|
|
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
|
error(SD_CARD_ERROR_CMD8);
|
|
goto fail;
|
|
}
|
|
}
|
|
// initialize card and send host supports SDHC if SD2
|
|
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
|
|
|
|
while (cardAcmd(ACMD41, arg) != R1_READY_STATE) {
|
|
// check for timeout
|
|
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
|
error(SD_CARD_ERROR_ACMD41);
|
|
goto fail;
|
|
}
|
|
}
|
|
// if SD2 read OCR register to check for SDHC card
|
|
if (type() == SD_CARD_TYPE_SD2) {
|
|
if (cardCommand(CMD58, 0)) {
|
|
error(SD_CARD_ERROR_CMD58);
|
|
goto fail;
|
|
}
|
|
if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
|
|
// discard rest of ocr - contains allowed voltage range
|
|
for (uint8_t i = 0; i < 3; i++) spiRec();
|
|
}
|
|
chipSelectHigh();
|
|
#ifndef SOFTWARE_SPI
|
|
return setSckRate(sckRateID);
|
|
#else // SOFTWARE_SPI
|
|
return true;
|
|
#endif // SOFTWARE_SPI
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Read a 512 byte block from an SD card.
|
|
*
|
|
* \param[in] blockNumber Logical block to be read.
|
|
* \param[out] dst Pointer to the location that will receive the data.
|
|
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
|
|
SD_TRACE("RB", blockNumber);
|
|
// use address if not SDHC card
|
|
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
|
if (cardCommand(CMD17, blockNumber)) {
|
|
error(SD_CARD_ERROR_CMD17);
|
|
goto fail;
|
|
}
|
|
return readData(dst, 512);
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Read one data block in a multiple block read sequence
|
|
*
|
|
* \param[in] dst Pointer to the location for the data to be read.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::readData(uint8_t *dst) {
|
|
chipSelectLow();
|
|
return readData(dst, 512);
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
bool Sd2Card::readData(uint8_t* dst, size_t count) {
|
|
uint16_t crc;
|
|
// wait for start block token
|
|
uint16_t t0 = millis();
|
|
while ((status_ = spiRec()) == 0XFF) {
|
|
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
|
|
error(SD_CARD_ERROR_READ_TIMEOUT);
|
|
goto fail;
|
|
}
|
|
}
|
|
if (status_ != DATA_START_BLOCK) {
|
|
error(SD_CARD_ERROR_READ);
|
|
goto fail;
|
|
}
|
|
// transfer data
|
|
if (status_ = spiRec(dst, count)) {
|
|
error(SD_CARD_ERROR_SPI_DMA);
|
|
goto fail;
|
|
}
|
|
// get crc
|
|
crc = (spiRec() << 8) | spiRec();
|
|
#if USE_SD_CRC
|
|
if (crc != CRC_CCITT(dst, count)) {
|
|
error(SD_CARD_ERROR_READ_CRC);
|
|
goto fail;
|
|
}
|
|
#endif // USE_SD_CRC
|
|
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** read CID or CSR register */
|
|
bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
|
|
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
|
|
if (cardCommand(cmd, 0)) {
|
|
error(SD_CARD_ERROR_READ_REG);
|
|
goto fail;
|
|
}
|
|
return readData(dst, 16);
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Start a read multiple blocks sequence.
|
|
*
|
|
* \param[in] blockNumber Address of first block in sequence.
|
|
*
|
|
* \note This function is used with readData() and readStop() for optimized
|
|
* multiple block reads. SPI chipSelect must be low for the entire sequence.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::readStart(uint32_t blockNumber) {
|
|
SD_TRACE("RS", blockNumber);
|
|
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
|
if (cardCommand(CMD18, blockNumber)) {
|
|
error(SD_CARD_ERROR_CMD18);
|
|
goto fail;
|
|
}
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** End a read multiple blocks sequence.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::readStop() {
|
|
chipSelectLow();
|
|
if (cardCommand(CMD12, 0)) {
|
|
error(SD_CARD_ERROR_CMD12);
|
|
goto fail;
|
|
}
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Set the SPI clock rate.
|
|
*
|
|
* \param[in] sckRateID A value in the range [0, 14].
|
|
*
|
|
* The SPI clock divisor will be set to approximately
|
|
*
|
|
* (2 + (sckRateID & 1)) << ( sckRateID/2)
|
|
*
|
|
* The maximum SPI rate is F_CPU/2 for \a sckRateID = 0 and the rate is
|
|
* F_CPU/128 for \a scsRateID = 12.
|
|
*
|
|
* \return The value one, true, is returned for success and the value zero,
|
|
* false, is returned for an invalid value of \a sckRateID.
|
|
*/
|
|
bool Sd2Card::setSckRate(uint8_t sckRateID) {
|
|
if (sckRateID > MAX_SCK_RATE_ID) {
|
|
error(SD_CARD_ERROR_SCK_RATE);
|
|
return false;
|
|
}
|
|
spiRate_ = sckRateID;
|
|
return true;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
// wait for card to go not busy
|
|
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
|
|
uint16_t t0 = millis();
|
|
while (spiRec() != 0XFF) {
|
|
if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail;
|
|
}
|
|
return true;
|
|
|
|
fail:
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/**
|
|
* Writes a 512 byte block to an SD card.
|
|
*
|
|
* \param[in] blockNumber Logical block to be written.
|
|
* \param[in] src Pointer to the location of the data to be written.
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
|
|
SD_TRACE("WB", blockNumber);
|
|
// use address if not SDHC card
|
|
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
|
if (cardCommand(CMD24, blockNumber)) {
|
|
error(SD_CARD_ERROR_CMD24);
|
|
goto fail;
|
|
}
|
|
if (!writeData(DATA_START_BLOCK, src)) goto fail;
|
|
|
|
// wait for flash programming to complete
|
|
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
|
|
error(SD_CARD_ERROR_WRITE_TIMEOUT);
|
|
goto fail;
|
|
}
|
|
// response is r2 so get and check two bytes for nonzero
|
|
if (cardCommand(CMD13, 0) || spiRec()) {
|
|
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
|
|
goto fail;
|
|
}
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Write one data block in a multiple block write sequence
|
|
* \param[in] src Pointer to the location of the data to be written.
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::writeData(const uint8_t* src) {
|
|
chipSelectLow();
|
|
// wait for previous write to finish
|
|
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
|
if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail;
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
error(SD_CARD_ERROR_WRITE_MULTIPLE);
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
// send one block of data for write block or write multiple blocks
|
|
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
|
|
#if USE_SD_CRC
|
|
uint16_t crc = CRC_CCITT(src, 512);
|
|
#else // USE_SD_CRC
|
|
uint16_t crc = 0XFFFF;
|
|
#endif // USE_SD_CRC
|
|
|
|
spiSend(token);
|
|
spiSend(src, 512);
|
|
spiSend(crc >> 8);
|
|
spiSend(crc & 0XFF);
|
|
|
|
status_ = spiRec();
|
|
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
|
|
error(SD_CARD_ERROR_WRITE);
|
|
goto fail;
|
|
}
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** Start a write multiple blocks sequence.
|
|
*
|
|
* \param[in] blockNumber Address of first block in sequence.
|
|
* \param[in] eraseCount The number of blocks to be pre-erased.
|
|
*
|
|
* \note This function is used with writeData() and writeStop()
|
|
* for optimized multiple block writes.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
|
|
SD_TRACE("WS", blockNumber);
|
|
// send pre-erase count
|
|
if (cardAcmd(ACMD23, eraseCount)) {
|
|
error(SD_CARD_ERROR_ACMD23);
|
|
goto fail;
|
|
}
|
|
// use address if not SDHC card
|
|
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
|
if (cardCommand(CMD25, blockNumber)) {
|
|
error(SD_CARD_ERROR_CMD25);
|
|
goto fail;
|
|
}
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|
|
//------------------------------------------------------------------------------
|
|
/** End a write multiple blocks sequence.
|
|
*
|
|
* \return The value one, true, is returned for success and
|
|
* the value zero, false, is returned for failure.
|
|
*/
|
|
bool Sd2Card::writeStop() {
|
|
chipSelectLow();
|
|
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
|
spiSend(STOP_TRAN_TOKEN);
|
|
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
|
chipSelectHigh();
|
|
return true;
|
|
|
|
fail:
|
|
error(SD_CARD_ERROR_STOP_TRAN);
|
|
chipSelectHigh();
|
|
return false;
|
|
}
|