This repository has been archived on 2020-09-09. You can view files and clone it, but cannot push or open issues or pull requests.
arduino_universal_serial_ad.../Universal_Serial_Adapter/UILCD.cpp

643 lines
16 KiB
C++

/*
Serial Adapter Project: Dynamic serial TTY passthroughs
by: Mike Crosson
Nusku Networks
date: 2013/03/09
license: CC-BY SA 3.0 - Creative commons share-alike 3.0
use this code however you'd like, just keep this license and
attribute.
*/
#include "Arduino.h"
#include <Adafruit_GFX.h>
#include <Adafruit_ST7735.h>
#include <SD.h>
#include <SPI.h>
#include "Project.h"
#include "UILCD.h"
#include "UIJoystickPSP.h"
UILCD::UILCD(Config* config) {
if (DEBUG) {
Serial.println("UILCD::UILCD()");
}
pinMode(LCD_LITE, OUTPUT);
this->config = config;
tft = new Adafruit_ST7735(LCD_CS, LCD_DC, LCD_RST);
tft->initR(INITR_BLACKTAB);
tft->setRotation(3);
if (!SD.begin(SD_CS) && DEBUG) {
Serial.println("SD.begin(SD_CS) -- failed!");
}
}
void UILCD::start() {
if (DEBUG) {
Serial.println("UILCD::start()");
}
drawSplashScreen();
drawMainScreen();
}
void UILCD::turnOn() {
if (DEBUG) {
Serial.println("UILCD::turnOn()");
}
digitalWrite(LCD_LITE, HIGH);
}
void UILCD::turnOff() {
if (DEBUG) {
Serial.println("UILCD::turnOff()");
}
digitalWrite(LCD_LITE, LOW);
}
void UILCD::handleJoystickEvent(joyDirection direction) {
if (DEBUG) {
Serial.println("UILCD::handleJoystickEvent()");
Serial.println("begin UILCD::handleJoystickEvent");
Serial.print("Current Screen: ");
Serial.println(currentScreen);
}
switch (currentScreen) {
case 1: // enum screen -> mainScreen
mainScreenHilight(direction);
break;
default: // config screens
configScreenHighlight(direction);
break;
}
}
void UILCD::handleOkButtonEvent() {
if (DEBUG) {
Serial.println("UILCD::handleOkButtonEvent()");
Serial.println("begin UILCD::handleOkButtonEvent");
Serial.print("Current Screen: ");
Serial.println(currentScreen);
}
switch (currentScreen) {
case 1: // enum screen -> mainScreen
mainScreenOkButton();
break;
case 2: // connectionScreen
config->setMode((serialmode)(currentLine - 3));
drawConnectionScreen(true);
break;
case 3: // lineSpeedScreen
config->setLineSpeed((linespeed)(currentLine - 3));
drawLineSpeedScreen(true);
break;
case 4: // voltageScreen
config->setVoltage((ttlvoltage)(currentLine - 3));
drawVoltageScreen(true);
break;
case 5: // timeoutScreen
config->setLCDTimeout((timeout)(currentLine - 3));
drawTimeoutScreen(true);
break;
}
}
void UILCD::handleCancelButtonEvent() {
if (DEBUG) {
Serial.println("UILCD::handleCancelButtonEvent");
Serial.println("begin UILCD::handleCancelButtonEvent");
Serial.print("Current Screen: ");
Serial.println(currentScreen);
}
switch (currentScreen) {
case 1: // enum screen -> mainScreen
mainScreenCancelButton();
break;
default:
drawMainScreen();
break;
}
}
void UILCD::mainScreenOkButton() {
if (DEBUG) {
Serial.println("UILCD::mainScreenOkButton");
}
switch(currentLine) {
case 0: // Connection Type
drawConnectionScreen(false);
break;
case 1: // Line speed
drawLineSpeedScreen(false);
break;
case 2: // Voltage
drawVoltageScreen(false);
break;
// case 4: // start data log
// break;
// case 5: // view serial data
// break;
// case 7: // configure rtc
// break;
case 8:
drawTimeoutScreen(false);
break;
}
}
void UILCD::mainScreenCancelButton() {
if (DEBUG) {
Serial.println("UILCD::mainScreenCancelButton()");
}
// Do nothing for now
}
void UILCD::unHilightLine(int line) {
if (DEBUG) {
Serial.println("UILCD::unHilightLine()");
}
tft->setCursor(0, line * FONT_HEIGHT);
tft->fillRect(0, line * FONT_HEIGHT, FONT_WIDTH, FONT_HEIGHT, BACKGROUND);
}
void UILCD::hilightLine(int line) {
if (DEBUG) {
Serial.println("UILCD::hilightLine()");
}
tft->setCursor(0, line * FONT_HEIGHT);
tft->setTextColor(HILIGHT);
tft->print("*");
}
void UILCD::mainScreenHilight(joyDirection direction) {
if (DEBUG) {
Serial.println("UILCD::mainScreenHilight()");
}
if (direction == joyUp) {
// Don't go up past the 1st line
if (currentLine == 0) {
return;
}
unHilightLine(currentLine);
currentLine -= 1;
// Skip blank lines
if (config->getSerialMode() == ttl) {
if (DEBUG) {
Serial.println("Serial ttl blank line skip");
}
if (currentLine == 3 || currentLine == 6) {
currentLine -= 1;
}
}
else {
if (DEBUG) {
Serial.println("Non-serial ttl blank line skip");
}
if (currentLine == 2 || currentLine == 5) {
currentLine -= 1;
}
}
hilightLine(currentLine);
}
if (direction == joyDown) {
// Don't go past the last line
if (config->getSerialMode() == ttl) {
if (currentLine == 8) {
return;
}
}
else {
if (currentLine == 7) {
return;
}
}
unHilightLine(currentLine);
currentLine += 1;
// Skip blank lines
if (config->getSerialMode() == ttl) {
if (DEBUG) {
Serial.println("Serial ttl blank line skip");
}
if (currentLine == 3 || currentLine == 6) {
currentLine += 1;
}
}
else {
if (DEBUG) {
Serial.println("Non-serial ttl blank line skip");
}
if (currentLine == 2 || currentLine == 5) {
currentLine += 1;
}
}
hilightLine(currentLine);
}
}
void UILCD::configScreenHighlight(joyDirection direction) {
if (DEBUG) {
Serial.println("UILCD::configScreenhilight()");
}
if (direction == joyUp) {
// Don't go up past the 1st line
if (currentLine == 3) {
return;
}
unHilightLine(currentLine);
currentLine -= 1;
hilightLine(currentLine);
}
if (direction == joyDown) {
// Don't go past the last line
switch (currentScreen) {
case 2: // connectionScreen
if (currentLine == maxserialmode + 2) {
return;
}
break;
case 3: // lineSpeedScreen
if (currentLine == maxlinespeed + 2) {
return;
}
break;
case 4: // voltageScreen
if (currentLine == maxvoltage + 2) {
return;
}
break;
case 5: // timeoutScreen
if (currentLine == maxtimeout + 2) {
return;
}
break;
}
unHilightLine(currentLine);
currentLine += 1;
hilightLine(currentLine);
}
}
void UILCD::drawTimeoutScreen(bool keepCurrentLine) {
if (DEBUG) {
Serial.println("UILCD::drawTimeoutScreen()");
}
currentScreen = timeoutscreen;
if (!keepCurrentLine) {
currentLine = 3;
}
tft->setCursor(0,0);
tft->fillScreen(BACKGROUND);
tft->setTextColor(TEXT);
tft->setTextWrap(true);
tft->println("Timout selection");
tft->println(" Current value is yellow");
tft->println();
for (int i=0; i<maxtimeout; i++) {
if (config->getTimeout() == i) {
tft->setTextColor(HILIGHT);
}
tft->print(" ");
tft->println(timeoutToText[i]);
tft->setTextColor(TEXT);
}
if (keepCurrentLine) {
hilightLine(currentLine);
}
else {
hilightLine(3);
}
}
void UILCD::drawConnectionScreen(bool keepCurrentLine) {
if (DEBUG) {
Serial.println("UILCD::drawConnectionScreen()");
}
currentScreen = connectionScreen;
if (!keepCurrentLine) {
currentLine = 3;
}
tft->setCursor(0,0);
tft->fillScreen(BACKGROUND);
tft->setTextColor(TEXT);
tft->setTextWrap(true);
tft->println("Type Selection");
tft->println(" Current value is yellow");
tft->println();
for (int i=0; i<maxserialmode; i++) {
if (config->getSerialMode() == i) {
tft->setTextColor(HILIGHT);
}
tft->print(" ");
tft->println(modeToText[i]);
tft->setTextColor(TEXT);
}
if (keepCurrentLine) {
hilightLine(currentLine);
}
else {
hilightLine(3);
}
}
void UILCD::drawLineSpeedScreen(bool keepCurrentLine) {
if (DEBUG) {
Serial.println("UILCD::drawLineSpeedScreen()");
}
currentScreen = lineSpeedScreen;
if (!keepCurrentLine) {
currentLine = 3;
}
tft->setCursor(0,0);
tft->fillScreen(BACKGROUND);
tft->setTextColor(TEXT);
tft->setTextWrap(true);
tft->println("Speed Selection");
tft->println(" Current value is yellow");
tft->println();
for (int i=0; i<maxlinespeed; i++) {
if (config->getLineSpeed() == i) {
tft->setTextColor(HILIGHT);
}
tft->print(" ");
tft->println(linespeeds[i].description);
tft->setTextColor(TEXT);
}
if (keepCurrentLine) {
hilightLine(currentLine);
}
else {
hilightLine(3);
}
}
void UILCD::drawVoltageScreen(bool keepCurrentLine) {
if (DEBUG) {
Serial.println("UILCD::drawVoltageScreen()");
}
currentScreen = voltageScreen;
if (!keepCurrentLine) {
currentLine = 3;
}
tft->setCursor(0,0);
tft->fillScreen(BACKGROUND);
tft->setTextColor(TEXT);
tft->setTextWrap(true);
tft->println("Voltage Selection");
tft->println(" Current value is yellow");
tft->println();
for (int i=0; i<maxvoltage; i++) {
if (config->getVoltage() == i) {
tft->setTextColor(HILIGHT);
}
tft->print(" ");
tft->println(voltageToText[i]);
tft->setTextColor(TEXT);
}
if (keepCurrentLine) {
hilightLine(currentLine);
}
else {
hilightLine(3);
}
}
void UILCD::drawMainScreen() {
if (DEBUG) {
Serial.println("UILCD::drawMainScreen()");
}
currentScreen = mainScreen;
currentLine = 0;
tft->setCursor(0,0);
tft->fillScreen(BACKGROUND);
tft->setTextColor(TEXT);
tft->setTextWrap(true);
tft->print(" Con Typ: ");
tft->println(modeToText[config->getSerialMode()]); // TODO: This should be pulled from the config
tft->print(" Line Speed: ");
tft->println(linespeeds[config->getLineSpeed()].description);
if (config->getSerialMode() == ttl) {
tft->print(" Voltage (TTL Only): ");
tft->println(voltageToText[config->getVoltage()]);
}
tft->println();
tft->println(" Start data logging");
tft->println(" View serial data");
tft->println();
tft->println(" Configure RTC / Clock");
tft->println(" Configure timeout");
hilightLine(0);
}
void UILCD::drawSplashScreen() {
if (DEBUG) {
Serial.println("UILCD::drawSplashScreen()");
}
tft->setCursor(0,0);
tft->fillScreen(SPLASH_BACKGROUND);
bmpDraw("splash.bmp", 13, 0);
delay(1250);
for (int16_t y=0; y < tft->height(); y+=1) {
tft->drawFastHLine(0, y, tft->width(), BACKGROUND);
delay(10);
}
}
void UILCD::bmpDraw(char *filename, uint8_t x, uint8_t y) {
if (DEBUG) {
Serial.println("UILCD::bmpDraw()");
}
File bmpFile;
int bmpWidth, bmpHeight; // W+H in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
uint32_t bmpImageoffset; // Start of image data in file
uint32_t rowSize; // Not always = bmpWidth; may have padding
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
boolean goodBmp = false; // Set to true on valid header parse
boolean flip = true; // BMP is stored bottom-to-top
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0, startTime = millis();
if((x >= tft->width()) || (y >= tft->height())) return;
if (DEBUG) {
Serial.println();
Serial.print("Loading image '");
Serial.print(filename);
Serial.println('\'');
}
// Open requested file on SD card
if ((bmpFile = SD.open(filename)) == NULL) {
if (DEBUG) {
Serial.print("File not found");
}
return;
}
// Parse BMP header
if(read16(bmpFile) == 0x4D42) { // BMP signature
if (DEBUG) {
Serial.print("File size: ");
Serial.println(read32(bmpFile));
}
(void)read32(bmpFile); // Read & ignore creator bytes
bmpImageoffset = read32(bmpFile); // Start of image data
if (DEBUG) {
Serial.print("Image Offset: ");
Serial.println(bmpImageoffset, DEC);
}
// Read DIB header
if (DEBUG) {
Serial.print("Header size: ");
Serial.println(read32(bmpFile));
}
bmpWidth = read32(bmpFile);
bmpHeight = read32(bmpFile);
if(read16(bmpFile) == 1) { // # planes -- must be '1'
bmpDepth = read16(bmpFile); // bits per pixel
if (DEBUG) {
Serial.print("Bit Depth: ");
Serial.println(bmpDepth);
}
if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
if (DEBUG) {
Serial.print("Image size: ");
Serial.print(bmpWidth);
Serial.print('x');
Serial.println(bmpHeight);
}
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
if((x+w-1) >= tft->width()) w = tft->width() - x;
if((y+h-1) >= tft->height()) h = tft->height() - y;
// Set TFT address window to clipped image bounds
tft->setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + row * rowSize;
if(bmpFile.position() != pos) { // Need seek?
bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each pixel...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format, push to display
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
tft->pushColor(tft->Color565(r,g,b));
} // end pixel
delay(5);
} // end scanline
if (DEBUG) {
Serial.print("Loaded in ");
Serial.print(millis() - startTime);
Serial.println(" ms");
}
} // end goodBmp
}
}
bmpFile.close();
if(!goodBmp && DEBUG) Serial.println("BMP format not recognized.");
}
// These read 16- and 32-bit types from the SD card file.
// BMP data is stored little-endian, Arduino is little-endian too.
// May need to reverse subscript order if porting elsewhere.
uint16_t UILCD::read16(File f) {
if (DEBUG) {
Serial.println("UILCD::read16()");
}
uint16_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read(); // MSB
return result;
}
uint32_t UILCD::read32(File f) {
if (DEBUG) {
Serial.println("UILCD::read32()");
}
uint32_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read();
((uint8_t *)&result)[2] = f.read();
((uint8_t *)&result)[3] = f.read(); // MSB
return result;
}