This repository has been archived on 2020-09-09. You can view files and clone it, but cannot push or open issues or pull requests.
arduino_universal_serial_ad.../Libraries/AdafruitLogger/SdFat/SdVolume.cpp

600 lines
16 KiB
C++
Raw Permalink Normal View History

/* Arduino SdFat Library
* Copyright (C) 2012 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <SdVolume.h>
// macro for debug
#define DBG_FAIL_MACRO // Serial.print(__FILE__);Serial.println(__LINE__)
//------------------------------------------------------------------------------
#if !USE_MULTIPLE_CARDS
// raw block cache
cache_t SdVolume::cacheBuffer_; // 512 byte cache for Sd2Card
uint32_t SdVolume::cacheBlockNumber_; // current block number
uint8_t SdVolume::cacheStatus_; // status of cache block
uint32_t SdVolume::cacheFatOffset_; // offset for mirrored FAT
#if USE_SEPARATE_FAT_CACHE
cache_t SdVolume::cacheFatBuffer_; // 512 byte cache for FAT
uint32_t SdVolume::cacheFatBlockNumber_; // current Fat block number
uint8_t SdVolume::cacheFatStatus_; // status of cache Fatblock
#endif // USE_SEPARATE_FAT_CACHE
Sd2Card* SdVolume::sdCard_; // pointer to SD card object
#endif // USE_MULTIPLE_CARDS
//------------------------------------------------------------------------------
// find a contiguous group of clusters
bool SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
// start of group
uint32_t bgnCluster;
// end of group
uint32_t endCluster;
// last cluster of FAT
uint32_t fatEnd = clusterCount_ + 1;
// flag to save place to start next search
bool setStart;
// set search start cluster
if (*curCluster) {
// try to make file contiguous
bgnCluster = *curCluster + 1;
// don't save new start location
setStart = false;
} else {
// start at likely place for free cluster
bgnCluster = allocSearchStart_;
// save next search start if one cluster
setStart = count == 1;
}
// end of group
endCluster = bgnCluster;
// search the FAT for free clusters
for (uint32_t n = 0;; n++, endCluster++) {
// can't find space checked all clusters
if (n >= clusterCount_) {
DBG_FAIL_MACRO;
goto fail;
}
// past end - start from beginning of FAT
if (endCluster > fatEnd) {
bgnCluster = endCluster = 2;
}
uint32_t f;
if (!fatGet(endCluster, &f)) {
DBG_FAIL_MACRO;
goto fail;
}
if (f != 0) {
// cluster in use try next cluster as bgnCluster
bgnCluster = endCluster + 1;
} else if ((endCluster - bgnCluster + 1) == count) {
// done - found space
break;
}
}
// mark end of chain
if (!fatPutEOC(endCluster)) {
DBG_FAIL_MACRO;
goto fail;
}
// link clusters
while (endCluster > bgnCluster) {
if (!fatPut(endCluster - 1, endCluster)) {
DBG_FAIL_MACRO;
goto fail;
}
endCluster--;
}
if (*curCluster != 0) {
// connect chains
if (!fatPut(*curCluster, bgnCluster)) {
DBG_FAIL_MACRO;
goto fail;
}
}
// return first cluster number to caller
*curCluster = bgnCluster;
// remember possible next free cluster
if (setStart) allocSearchStart_ = bgnCluster + 1;
return true;
fail:
return false;
}
//==============================================================================
// cache functions
#if USE_SEPARATE_FAT_CACHE
//------------------------------------------------------------------------------
cache_t* SdVolume::cacheFetch(uint32_t blockNumber, uint8_t options) {
return cacheFetchData(blockNumber, options);
}
//------------------------------------------------------------------------------
cache_t* SdVolume::cacheFetchData(uint32_t blockNumber, uint8_t options) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheWriteData()) {
DBG_FAIL_MACRO;
goto fail;
}
if (!(options & CACHE_OPTION_NO_READ)) {
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
}
cacheStatus_ = 0;
cacheBlockNumber_ = blockNumber;
}
cacheStatus_ |= options & CACHE_STATUS_MASK;
return &cacheBuffer_;
fail:
return 0;
}
//------------------------------------------------------------------------------
cache_t* SdVolume::cacheFetchFat(uint32_t blockNumber, uint8_t options) {
if (cacheFatBlockNumber_ != blockNumber) {
if (!cacheWriteFat()) {
DBG_FAIL_MACRO;
goto fail;
}
if (!(options & CACHE_OPTION_NO_READ)) {
if (!sdCard_->readBlock(blockNumber, cacheFatBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
}
cacheFatStatus_ = 0;
cacheFatBlockNumber_ = blockNumber;
}
cacheFatStatus_ |= options & CACHE_STATUS_MASK;
return &cacheFatBuffer_;
fail:
return 0;
}
//------------------------------------------------------------------------------
bool SdVolume::cacheSync() {
return cacheWriteData() && cacheWriteFat();
}
//------------------------------------------------------------------------------
bool SdVolume::cacheWriteData() {
if (cacheStatus_ & CACHE_STATUS_DIRTY) {
if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
cacheStatus_ &= ~CACHE_STATUS_DIRTY;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
bool SdVolume::cacheWriteFat() {
if (cacheFatStatus_ & CACHE_STATUS_DIRTY) {
if (!sdCard_->writeBlock(cacheFatBlockNumber_, cacheFatBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
// mirror second FAT
if (cacheFatOffset_) {
uint32_t lbn = cacheFatBlockNumber_ + cacheFatOffset_;
if (!sdCard_->writeBlock(lbn, cacheFatBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
}
cacheFatStatus_ &= ~CACHE_STATUS_DIRTY;
}
return true;
fail:
return false;
}
#else // USE_SEPARATE_FAT_CACHE
//------------------------------------------------------------------------------
cache_t* SdVolume::cacheFetch(uint32_t blockNumber, uint8_t options) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheSync()) {
DBG_FAIL_MACRO;
goto fail;
}
if (!(options & CACHE_OPTION_NO_READ)) {
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
}
cacheStatus_ = 0;
cacheBlockNumber_ = blockNumber;
}
cacheStatus_ |= options & CACHE_STATUS_MASK;
return &cacheBuffer_;
fail:
return 0;
}
//------------------------------------------------------------------------------
cache_t* SdVolume::cacheFetchFat(uint32_t blockNumber, uint8_t options) {
return cacheFetch(blockNumber, options | CACHE_STATUS_FAT_BLOCK);
}
//------------------------------------------------------------------------------
bool SdVolume::cacheSync() {
if (cacheStatus_ & CACHE_STATUS_DIRTY) {
if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
// mirror second FAT
if ((cacheStatus_ & CACHE_STATUS_FAT_BLOCK) && cacheFatOffset_) {
uint32_t lbn = cacheBlockNumber_ + cacheFatOffset_;
if (!sdCard_->writeBlock(lbn, cacheBuffer_.data)) {
DBG_FAIL_MACRO;
goto fail;
}
}
cacheStatus_ &= ~CACHE_STATUS_DIRTY;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
bool SdVolume::cacheWriteData() {
return cacheSync();
}
#endif // USE_SEPARATE_FAT_CACHE
//------------------------------------------------------------------------------
void SdVolume::cacheInvalidate() {
cacheBlockNumber_ = 0XFFFFFFFF;
cacheStatus_ = 0;
}
//==============================================================================
//------------------------------------------------------------------------------
uint32_t SdVolume::clusterStartBlock(uint32_t cluster) const {
return dataStartBlock_ + ((cluster - 2)*blocksPerCluster_);
}
//------------------------------------------------------------------------------
// Fetch a FAT entry
bool SdVolume::fatGet(uint32_t cluster, uint32_t* value) {
uint32_t lba;
cache_t* pc;
// error if reserved cluster of beyond FAT
if (cluster < 2 || cluster > (clusterCount_ + 1)) {
DBG_FAIL_MACRO;
goto fail;
}
if (FAT12_SUPPORT && fatType_ == 12) {
uint16_t index = cluster;
index += index >> 1;
lba = fatStartBlock_ + (index >> 9);
pc = cacheFetchFat(lba, CACHE_FOR_READ);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
index &= 0X1FF;
uint16_t tmp = pc->data[index];
index++;
if (index == 512) {
pc = cacheFetchFat(lba + 1, CACHE_FOR_READ);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
index = 0;
}
tmp |= pc->data[index] << 8;
*value = cluster & 1 ? tmp >> 4 : tmp & 0XFFF;
return true;
}
if (fatType_ == 16) {
lba = fatStartBlock_ + (cluster >> 8);
} else if (fatType_ == 32) {
lba = fatStartBlock_ + (cluster >> 7);
} else {
DBG_FAIL_MACRO;
goto fail;
}
pc = cacheFetchFat(lba, CACHE_FOR_READ);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
if (fatType_ == 16) {
*value = pc->fat16[cluster & 0XFF];
} else {
*value = pc->fat32[cluster & 0X7F] & FAT32MASK;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
// Store a FAT entry
bool SdVolume::fatPut(uint32_t cluster, uint32_t value) {
uint32_t lba;
cache_t* pc;
// error if reserved cluster of beyond FAT
if (cluster < 2 || cluster > (clusterCount_ + 1)) {
DBG_FAIL_MACRO;
goto fail;
}
if (FAT12_SUPPORT && fatType_ == 12) {
uint16_t index = cluster;
index += index >> 1;
lba = fatStartBlock_ + (index >> 9);
pc = cacheFetchFat(lba, CACHE_FOR_WRITE);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
index &= 0X1FF;
uint8_t tmp = value;
if (cluster & 1) {
tmp = (pc->data[index] & 0XF) | tmp << 4;
}
pc->data[index] = tmp;
index++;
if (index == 512) {
lba++;
index = 0;
pc = cacheFetchFat(lba, CACHE_FOR_WRITE);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
}
tmp = value >> 4;
if (!(cluster & 1)) {
tmp = ((pc->data[index] & 0XF0)) | tmp >> 4;
}
pc->data[index] = tmp;
return true;
}
if (fatType_ == 16) {
lba = fatStartBlock_ + (cluster >> 8);
} else if (fatType_ == 32) {
lba = fatStartBlock_ + (cluster >> 7);
} else {
DBG_FAIL_MACRO;
goto fail;
}
pc = cacheFetchFat(lba, CACHE_FOR_WRITE);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
// store entry
if (fatType_ == 16) {
pc->fat16[cluster & 0XFF] = value;
} else {
pc->fat32[cluster & 0X7F] = value;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
// free a cluster chain
bool SdVolume::freeChain(uint32_t cluster) {
uint32_t next;
// clear free cluster location
allocSearchStart_ = 2;
do {
if (!fatGet(cluster, &next)) {
DBG_FAIL_MACRO;
goto fail;
}
// free cluster
if (!fatPut(cluster, 0)) {
DBG_FAIL_MACRO;
goto fail;
}
cluster = next;
} while (!isEOC(cluster));
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
/** Volume free space in clusters.
*
* \return Count of free clusters for success or -1 if an error occurs.
*/
int32_t SdVolume::freeClusterCount() {
uint32_t free = 0;
uint32_t lba;
uint32_t todo = clusterCount_ + 2;
uint16_t n;
if (FAT12_SUPPORT && fatType_ == 12) {
for (unsigned i = 2; i < todo; i++) {
uint32_t c;
if (!fatGet(i, &c)) {
DBG_FAIL_MACRO;
goto fail;
}
if (c == 0) free++;
}
} else if (fatType_ == 16 || fatType_ == 32) {
lba = fatStartBlock_;
while (todo) {
cache_t* pc = cacheFetchFat(lba++, CACHE_FOR_READ);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
n = fatType_ == 16 ? 256 : 128;
if (todo < n) n = todo;
if (fatType_ == 16) {
for (uint16_t i = 0; i < n; i++) {
if (pc->fat16[i] == 0) free++;
}
} else {
for (uint16_t i = 0; i < n; i++) {
if (pc->fat32[i] == 0) free++;
}
}
todo -= n;
}
} else {
// invalid FAT type
DBG_FAIL_MACRO;
goto fail;
}
return free;
fail:
return -1;
}
//------------------------------------------------------------------------------
/** Initialize a FAT volume.
*
* \param[in] dev The SD card where the volume is located.
*
* \param[in] part The partition to be used. Legal values for \a part are
* 1-4 to use the corresponding partition on a device formatted with
* a MBR, Master Boot Record, or zero if the device is formatted as
* a super floppy with the FAT boot sector in block zero.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. Reasons for
* failure include not finding a valid partition, not finding a valid
* FAT file system in the specified partition or an I/O error.
*/
bool SdVolume::init(Sd2Card* dev, uint8_t part) {
uint32_t totalBlocks;
uint32_t volumeStartBlock = 0;
fat32_boot_t* fbs;
cache_t* pc;
sdCard_ = dev;
fatType_ = 0;
allocSearchStart_ = 2;
cacheStatus_ = 0; // cacheSync() will write block if true
cacheBlockNumber_ = 0XFFFFFFFF;
cacheFatOffset_ = 0;
#if USE_SERARATEFAT_CACHE
cacheFatStatus_ = 0; // cacheSync() will write block if true
cacheFatBlockNumber_ = 0XFFFFFFFF;
#endif // USE_SERARATEFAT_CACHE
// if part == 0 assume super floppy with FAT boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (part > 4) {
DBG_FAIL_MACRO;
goto fail;
}
pc = cacheFetch(volumeStartBlock, CACHE_FOR_READ);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
part_t* p = &pc->mbr.part[part-1];
if ((p->boot & 0X7F) !=0 ||
p->totalSectors < 100 ||
p->firstSector == 0) {
// not a valid partition
DBG_FAIL_MACRO;
goto fail;
}
volumeStartBlock = p->firstSector;
}
pc = cacheFetch(volumeStartBlock, CACHE_FOR_READ);
if (!pc) {
DBG_FAIL_MACRO;
goto fail;
}
fbs = &(pc->fbs32);
if (fbs->bytesPerSector != 512 ||
fbs->fatCount == 0 ||
fbs->reservedSectorCount == 0 ||
fbs->sectorsPerCluster == 0) {
// not valid FAT volume
DBG_FAIL_MACRO;
goto fail;
}
fatCount_ = fbs->fatCount;
blocksPerCluster_ = fbs->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
// error if not power of 2
if (clusterSizeShift_++ > 7) {
DBG_FAIL_MACRO;
goto fail;
}
}
blocksPerFat_ = fbs->sectorsPerFat16 ?
fbs->sectorsPerFat16 : fbs->sectorsPerFat32;
if (fatCount_ > 0) cacheFatOffset_ = blocksPerFat_;
fatStartBlock_ = volumeStartBlock + fbs->reservedSectorCount;
// count for FAT16 zero for FAT32
rootDirEntryCount_ = fbs->rootDirEntryCount;
// directory start for FAT16 dataStart for FAT32
rootDirStart_ = fatStartBlock_ + fbs->fatCount * blocksPerFat_;
// data start for FAT16 and FAT32
dataStartBlock_ = rootDirStart_ + ((32 * fbs->rootDirEntryCount + 511)/512);
// total blocks for FAT16 or FAT32
totalBlocks = fbs->totalSectors16 ?
fbs->totalSectors16 : fbs->totalSectors32;
// total data blocks
clusterCount_ = totalBlocks - (dataStartBlock_ - volumeStartBlock);
// divide by cluster size to get cluster count
clusterCount_ >>= clusterSizeShift_;
// FAT type is determined by cluster count
if (clusterCount_ < 4085) {
fatType_ = 12;
if (!FAT12_SUPPORT) {
DBG_FAIL_MACRO;
goto fail;
}
} else if (clusterCount_ < 65525) {
fatType_ = 16;
} else {
rootDirStart_ = fbs->fat32RootCluster;
fatType_ = 32;
}
return true;
fail:
return false;
}