serial_debugger/hardware/sd_card_formatter/src/SdFat/SpiDriver/SdSpiSAM3X.cpp

219 lines
7.7 KiB
C++

/**
* Copyright (c) 2011-2018 Bill Greiman
* This file is part of the SdFat library for SD memory cards.
*
* MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "SdSpiDriver.h"
#if defined(__SAM3X8E__) || defined(__SAM3X8H__)
/** Use SAM3X DMAC if nonzero */
#define USE_SAM3X_DMAC 1
/** Use extra Bus Matrix arbitration fix if nonzero */
#define USE_SAM3X_BUS_MATRIX_FIX 0
/** Time in ms for DMA receive timeout */
#define SAM3X_DMA_TIMEOUT 100
/** chip select register number */
#define SPI_CHIP_SEL 3
/** DMAC receive channel */
#define SPI_DMAC_RX_CH 1
/** DMAC transmit channel */
#define SPI_DMAC_TX_CH 0
/** DMAC Channel HW Interface Number for SPI TX. */
#define SPI_TX_IDX 1
/** DMAC Channel HW Interface Number for SPI RX. */
#define SPI_RX_IDX 2
//------------------------------------------------------------------------------
/** Disable DMA Controller. */
static void dmac_disable() {
DMAC->DMAC_EN &= (~DMAC_EN_ENABLE);
}
/** Enable DMA Controller. */
static void dmac_enable() {
DMAC->DMAC_EN = DMAC_EN_ENABLE;
}
/** Disable DMA Channel. */
static void dmac_channel_disable(uint32_t ul_num) {
DMAC->DMAC_CHDR = DMAC_CHDR_DIS0 << ul_num;
}
/** Enable DMA Channel. */
static void dmac_channel_enable(uint32_t ul_num) {
DMAC->DMAC_CHER = DMAC_CHER_ENA0 << ul_num;
}
/** Poll for transfer complete. */
static bool dmac_channel_transfer_done(uint32_t ul_num) {
return (DMAC->DMAC_CHSR & (DMAC_CHSR_ENA0 << ul_num)) ? false : true;
}
//------------------------------------------------------------------------------
void SdSpiAltDriver::begin(uint8_t csPin) {
m_csPin = csPin;
pinMode(m_csPin, OUTPUT);
digitalWrite(m_csPin, HIGH);
SPI.begin();
#if USE_SAM3X_DMAC
pmc_enable_periph_clk(ID_DMAC);
dmac_disable();
DMAC->DMAC_GCFG = DMAC_GCFG_ARB_CFG_FIXED;
dmac_enable();
#if USE_SAM3X_BUS_MATRIX_FIX
MATRIX->MATRIX_WPMR = 0x4d415400;
MATRIX->MATRIX_MCFG[1] = 1;
MATRIX->MATRIX_MCFG[2] = 1;
MATRIX->MATRIX_SCFG[0] = 0x01000010;
MATRIX->MATRIX_SCFG[1] = 0x01000010;
MATRIX->MATRIX_SCFG[7] = 0x01000010;
#endif // USE_SAM3X_BUS_MATRIX_FIX
#endif // USE_SAM3X_DMAC
}
//------------------------------------------------------------------------------
// start RX DMA
static void spiDmaRX(uint8_t* dst, uint16_t count) {
dmac_channel_disable(SPI_DMAC_RX_CH);
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_SADDR = (uint32_t)&SPI0->SPI_RDR;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_DADDR = (uint32_t)dst;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_DSCR = 0;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CTRLA = count |
DMAC_CTRLA_SRC_WIDTH_BYTE | DMAC_CTRLA_DST_WIDTH_BYTE;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CTRLB = DMAC_CTRLB_SRC_DSCR |
DMAC_CTRLB_DST_DSCR | DMAC_CTRLB_FC_PER2MEM_DMA_FC |
DMAC_CTRLB_SRC_INCR_FIXED | DMAC_CTRLB_DST_INCR_INCREMENTING;
DMAC->DMAC_CH_NUM[SPI_DMAC_RX_CH].DMAC_CFG = DMAC_CFG_SRC_PER(SPI_RX_IDX) |
DMAC_CFG_SRC_H2SEL | DMAC_CFG_SOD | DMAC_CFG_FIFOCFG_ASAP_CFG;
dmac_channel_enable(SPI_DMAC_RX_CH);
}
//------------------------------------------------------------------------------
// start TX DMA
static void spiDmaTX(const uint8_t* src, uint16_t count) {
static uint8_t ff = 0XFF;
uint32_t src_incr = DMAC_CTRLB_SRC_INCR_INCREMENTING;
if (!src) {
src = &ff;
src_incr = DMAC_CTRLB_SRC_INCR_FIXED;
}
dmac_channel_disable(SPI_DMAC_TX_CH);
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_SADDR = (uint32_t)src;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_DADDR = (uint32_t)&SPI0->SPI_TDR;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_DSCR = 0;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CTRLA = count |
DMAC_CTRLA_SRC_WIDTH_BYTE | DMAC_CTRLA_DST_WIDTH_BYTE;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CTRLB = DMAC_CTRLB_SRC_DSCR |
DMAC_CTRLB_DST_DSCR | DMAC_CTRLB_FC_MEM2PER_DMA_FC |
src_incr | DMAC_CTRLB_DST_INCR_FIXED;
DMAC->DMAC_CH_NUM[SPI_DMAC_TX_CH].DMAC_CFG = DMAC_CFG_DST_PER(SPI_TX_IDX) |
DMAC_CFG_DST_H2SEL | DMAC_CFG_SOD | DMAC_CFG_FIFOCFG_ALAP_CFG;
dmac_channel_enable(SPI_DMAC_TX_CH);
}
//------------------------------------------------------------------------------
// initialize SPI controller
void SdSpiAltDriver::activate() {
SPI.beginTransaction(m_spiSettings);
Spi* pSpi = SPI0;
// Save the divisor
uint32_t scbr = pSpi->SPI_CSR[SPI_CHIP_SEL] & 0XFF00;
// Disable SPI
pSpi->SPI_CR = SPI_CR_SPIDIS;
// reset SPI
pSpi->SPI_CR = SPI_CR_SWRST;
// no mode fault detection, set master mode
pSpi->SPI_MR = SPI_PCS(SPI_CHIP_SEL) | SPI_MR_MODFDIS | SPI_MR_MSTR;
// mode 0, 8-bit,
pSpi->SPI_CSR[SPI_CHIP_SEL] = scbr | SPI_CSR_CSAAT | SPI_CSR_NCPHA;
// enable SPI
pSpi->SPI_CR |= SPI_CR_SPIEN;
}
//------------------------------------------------------------------------------
void SdSpiAltDriver::deactivate() {
SPI.endTransaction();
}
//------------------------------------------------------------------------------
static inline uint8_t spiTransfer(uint8_t b) {
Spi* pSpi = SPI0;
pSpi->SPI_TDR = b;
while ((pSpi->SPI_SR & SPI_SR_RDRF) == 0) {}
b = pSpi->SPI_RDR;
return b;
}
//------------------------------------------------------------------------------
/** SPI receive a byte */
uint8_t SdSpiAltDriver::receive() {
return spiTransfer(0XFF);
}
//------------------------------------------------------------------------------
/** SPI receive multiple bytes */
uint8_t SdSpiAltDriver::receive(uint8_t* buf, size_t n) {
Spi* pSpi = SPI0;
int rtn = 0;
#if USE_SAM3X_DMAC
// clear overrun error
pSpi->SPI_SR;
spiDmaRX(buf, n);
spiDmaTX(0, n);
uint32_t m = millis();
while (!dmac_channel_transfer_done(SPI_DMAC_RX_CH)) {
if ((millis() - m) > SAM3X_DMA_TIMEOUT) {
dmac_channel_disable(SPI_DMAC_RX_CH);
dmac_channel_disable(SPI_DMAC_TX_CH);
rtn = 2;
break;
}
}
if (pSpi->SPI_SR & SPI_SR_OVRES) {
rtn |= 1;
}
#else // USE_SAM3X_DMAC
for (size_t i = 0; i < n; i++) {
pSpi->SPI_TDR = 0XFF;
while ((pSpi->SPI_SR & SPI_SR_RDRF) == 0) {}
buf[i] = pSpi->SPI_RDR;
}
#endif // USE_SAM3X_DMAC
return rtn;
}
//------------------------------------------------------------------------------
/** SPI send a byte */
void SdSpiAltDriver::send(uint8_t b) {
spiTransfer(b);
}
//------------------------------------------------------------------------------
void SdSpiAltDriver::send(const uint8_t* buf , size_t n) {
Spi* pSpi = SPI0;
#if USE_SAM3X_DMAC
spiDmaTX(buf, n);
while (!dmac_channel_transfer_done(SPI_DMAC_TX_CH)) {}
#else // #if USE_SAM3X_DMAC
while ((pSpi->SPI_SR & SPI_SR_TXEMPTY) == 0) {}
for (size_t i = 0; i < n; i++) {
pSpi->SPI_TDR = buf[i];
while ((pSpi->SPI_SR & SPI_SR_TDRE) == 0) {}
}
#endif // #if USE_SAM3X_DMAC
while ((pSpi->SPI_SR & SPI_SR_TXEMPTY) == 0) {}
// leave RDR empty
pSpi->SPI_RDR;
}
#endif // defined(__SAM3X8E__) || defined(__SAM3X8H__)