/** * Copyright (c) 2011-2018 Bill Greiman * This file is part of the SdFat library for SD memory cards. * * MIT License * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "FatVolume.h" //------------------------------------------------------------------------------ cache_t* FatCache::read(uint32_t lbn, uint8_t option) { if (m_lbn != lbn) { if (!sync()) { DBG_FAIL_MACRO; goto fail; } if (!(option & CACHE_OPTION_NO_READ)) { if (!m_vol->readBlock(lbn, m_block.data)) { DBG_FAIL_MACRO; goto fail; } } m_status = 0; m_lbn = lbn; } m_status |= option & CACHE_STATUS_MASK; return &m_block; fail: return 0; } //------------------------------------------------------------------------------ bool FatCache::sync() { if (m_status & CACHE_STATUS_DIRTY) { if (!m_vol->writeBlock(m_lbn, m_block.data)) { DBG_FAIL_MACRO; goto fail; } // mirror second FAT if (m_status & CACHE_STATUS_MIRROR_FAT) { uint32_t lbn = m_lbn + m_vol->blocksPerFat(); if (!m_vol->writeBlock(lbn, m_block.data)) { DBG_FAIL_MACRO; goto fail; } } m_status &= ~CACHE_STATUS_DIRTY; } return true; fail: return false; } //------------------------------------------------------------------------------ bool FatVolume::allocateCluster(uint32_t current, uint32_t* next) { uint32_t find; bool setStart; if (m_allocSearchStart < current) { // Try to keep file contiguous. Start just after current cluster. find = current; setStart = false; } else { find = m_allocSearchStart; setStart = true; } while (1) { find++; if (find > m_lastCluster) { if (setStart) { // Can't find space, checked all clusters. DBG_FAIL_MACRO; goto fail; } find = m_allocSearchStart; setStart = true; continue; } if (find == current) { // Can't find space, already searched clusters after current. DBG_FAIL_MACRO; goto fail; } uint32_t f; int8_t fg = fatGet(find, &f); if (fg < 0) { DBG_FAIL_MACRO; goto fail; } if (fg && f == 0) { break; } } if (setStart) { m_allocSearchStart = find; } // Mark end of chain. if (!fatPutEOC(find)) { DBG_FAIL_MACRO; goto fail; } if (current) { // Link clusters. if (!fatPut(current, find)) { DBG_FAIL_MACRO; goto fail; } } updateFreeClusterCount(-1); *next = find; return true; fail: return false; } //------------------------------------------------------------------------------ // find a contiguous group of clusters bool FatVolume::allocContiguous(uint32_t count, uint32_t* firstCluster, uint32_t startCluster) { // flag to save place to start next search bool setStart; // start of group uint32_t bgnCluster; // end of group uint32_t endCluster; if (startCluster != 0) { bgnCluster = startCluster; setStart = false; } else { // Start at cluster after last allocated cluster. bgnCluster = m_allocSearchStart + 1; setStart = true; } endCluster = bgnCluster; // search the FAT for free clusters while (1) { if (endCluster > m_lastCluster) { // Can't find space. DBG_FAIL_MACRO; goto fail; } uint32_t f; int8_t fg = fatGet(endCluster, &f); if (fg < 0) { DBG_FAIL_MACRO; goto fail; } if (f || fg == 0) { if (startCluster) { DBG_FAIL_MACRO; goto fail; } // don't update search start if unallocated clusters before endCluster. if (bgnCluster != endCluster) { setStart = false; } // cluster in use try next cluster as bgnCluster bgnCluster = endCluster + 1; } else if ((endCluster - bgnCluster + 1) == count) { // done - found space break; } endCluster++; } // Remember possible next free cluster. if (setStart) { m_allocSearchStart = endCluster; } // mark end of chain if (!fatPutEOC(endCluster)) { DBG_FAIL_MACRO; goto fail; } // link clusters while (endCluster > bgnCluster) { if (!fatPut(endCluster - 1, endCluster)) { DBG_FAIL_MACRO; goto fail; } endCluster--; } // Maintain count of free clusters. updateFreeClusterCount(-count); // return first cluster number to caller *firstCluster = bgnCluster; return true; fail: return false; } //------------------------------------------------------------------------------ uint32_t FatVolume::clusterFirstBlock(uint32_t cluster) const { return m_dataStartBlock + ((cluster - 2) << m_clusterSizeShift); } //------------------------------------------------------------------------------ // Fetch a FAT entry - return -1 error, 0 EOC, else 1. int8_t FatVolume::fatGet(uint32_t cluster, uint32_t* value) { uint32_t lba; uint32_t next; cache_t* pc; // error if reserved cluster of beyond FAT if (cluster < 2 || cluster > m_lastCluster) { DBG_FAIL_MACRO; goto fail; } if (fatType() == 32) { lba = m_fatStartBlock + (cluster >> 7); pc = cacheFetchFat(lba, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } next = pc->fat32[cluster & 0X7F] & FAT32MASK; goto done; } if (fatType() == 16) { lba = m_fatStartBlock + ((cluster >> 8) & 0XFF); pc = cacheFetchFat(lba, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } next = pc->fat16[cluster & 0XFF]; goto done; } if (FAT12_SUPPORT && fatType() == 12) { uint16_t index = cluster; index += index >> 1; lba = m_fatStartBlock + (index >> 9); pc = cacheFetchFat(lba, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } index &= 0X1FF; uint16_t tmp = pc->data[index]; index++; if (index == 512) { pc = cacheFetchFat(lba + 1, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } index = 0; } tmp |= pc->data[index] << 8; next = cluster & 1 ? tmp >> 4 : tmp & 0XFFF; goto done; } else { DBG_FAIL_MACRO; goto fail; } done: if (isEOC(next)) { return 0; } *value = next; return 1; fail: return -1; } //------------------------------------------------------------------------------ // Store a FAT entry bool FatVolume::fatPut(uint32_t cluster, uint32_t value) { uint32_t lba; cache_t* pc; // error if reserved cluster of beyond FAT if (cluster < 2 || cluster > m_lastCluster) { DBG_FAIL_MACRO; goto fail; } if (fatType() == 32) { lba = m_fatStartBlock + (cluster >> 7); pc = cacheFetchFat(lba, FatCache::CACHE_FOR_WRITE); if (!pc) { DBG_FAIL_MACRO; goto fail; } pc->fat32[cluster & 0X7F] = value; return true; } if (fatType() == 16) { lba = m_fatStartBlock + ((cluster >> 8) & 0XFF); pc = cacheFetchFat(lba, FatCache::CACHE_FOR_WRITE); if (!pc) { DBG_FAIL_MACRO; goto fail; } pc->fat16[cluster & 0XFF] = value; return true; } if (FAT12_SUPPORT && fatType() == 12) { uint16_t index = cluster; index += index >> 1; lba = m_fatStartBlock + (index >> 9); pc = cacheFetchFat(lba, FatCache::CACHE_FOR_WRITE); if (!pc) { DBG_FAIL_MACRO; goto fail; } index &= 0X1FF; uint8_t tmp = value; if (cluster & 1) { tmp = (pc->data[index] & 0XF) | tmp << 4; } pc->data[index] = tmp; index++; if (index == 512) { lba++; index = 0; pc = cacheFetchFat(lba, FatCache::CACHE_FOR_WRITE); if (!pc) { DBG_FAIL_MACRO; goto fail; } } tmp = value >> 4; if (!(cluster & 1)) { tmp = ((pc->data[index] & 0XF0)) | tmp >> 4; } pc->data[index] = tmp; return true; } else { DBG_FAIL_MACRO; goto fail; } fail: return false; } //------------------------------------------------------------------------------ // free a cluster chain bool FatVolume::freeChain(uint32_t cluster) { uint32_t next = 0; int8_t fg; do { fg = fatGet(cluster, &next); if (fg < 0) { DBG_FAIL_MACRO; goto fail; } // free cluster if (!fatPut(cluster, 0)) { DBG_FAIL_MACRO; goto fail; } // Add one to count of free clusters. updateFreeClusterCount(1); if (cluster <= m_allocSearchStart) { m_allocSearchStart = cluster - 1; } cluster = next; } while (fg); return true; fail: return false; } //------------------------------------------------------------------------------ int32_t FatVolume::freeClusterCount() { #if MAINTAIN_FREE_CLUSTER_COUNT if (m_freeClusterCount >= 0) { return m_freeClusterCount; } #endif // MAINTAIN_FREE_CLUSTER_COUNT uint32_t free = 0; uint32_t lba; uint32_t todo = m_lastCluster + 1; uint16_t n; if (FAT12_SUPPORT && fatType() == 12) { for (unsigned i = 2; i < todo; i++) { uint32_t c; int8_t fg = fatGet(i, &c); if (fg < 0) { DBG_FAIL_MACRO; goto fail; } if (fg && c == 0) { free++; } } } else if (fatType() == 16 || fatType() == 32) { lba = m_fatStartBlock; while (todo) { cache_t* pc = cacheFetchFat(lba++, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } n = fatType() == 16 ? 256 : 128; if (todo < n) { n = todo; } if (fatType() == 16) { for (uint16_t i = 0; i < n; i++) { if (pc->fat16[i] == 0) { free++; } } } else { for (uint16_t i = 0; i < n; i++) { if (pc->fat32[i] == 0) { free++; } } } todo -= n; } } else { // invalid FAT type DBG_FAIL_MACRO; goto fail; } setFreeClusterCount(free); return free; fail: return -1; } //------------------------------------------------------------------------------ bool FatVolume::init(uint8_t part) { uint32_t clusterCount; uint32_t totalBlocks; uint32_t volumeStartBlock = 0; fat32_boot_t* fbs; cache_t* pc; uint8_t tmp; m_fatType = 0; m_allocSearchStart = 1; m_cache.init(this); #if USE_SEPARATE_FAT_CACHE m_fatCache.init(this); #endif // USE_SEPARATE_FAT_CACHE // if part == 0 assume super floppy with FAT boot sector in block zero // if part > 0 assume mbr volume with partition table if (part) { if (part > 4) { DBG_FAIL_MACRO; goto fail; } pc = cacheFetchData(0, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } part_t* p = &pc->mbr.part[part - 1]; if ((p->boot & 0X7F) != 0 || p->firstSector == 0) { // not a valid partition DBG_FAIL_MACRO; goto fail; } volumeStartBlock = p->firstSector; } pc = cacheFetchData(volumeStartBlock, FatCache::CACHE_FOR_READ); if (!pc) { DBG_FAIL_MACRO; goto fail; } fbs = &(pc->fbs32); if (fbs->bytesPerSector != 512 || fbs->fatCount != 2 || fbs->reservedSectorCount == 0) { // not valid FAT volume DBG_FAIL_MACRO; goto fail; } m_blocksPerCluster = fbs->sectorsPerCluster; m_clusterBlockMask = m_blocksPerCluster - 1; // determine shift that is same as multiply by m_blocksPerCluster m_clusterSizeShift = 0; for (tmp = 1; m_blocksPerCluster != tmp; tmp <<= 1, m_clusterSizeShift++) { if (tmp == 0) { DBG_FAIL_MACRO; goto fail; } } m_blocksPerFat = fbs->sectorsPerFat16 ? fbs->sectorsPerFat16 : fbs->sectorsPerFat32; m_fatStartBlock = volumeStartBlock + fbs->reservedSectorCount; // count for FAT16 zero for FAT32 m_rootDirEntryCount = fbs->rootDirEntryCount; // directory start for FAT16 dataStart for FAT32 m_rootDirStart = m_fatStartBlock + 2 * m_blocksPerFat; // data start for FAT16 and FAT32 m_dataStartBlock = m_rootDirStart + ((32 * fbs->rootDirEntryCount + 511)/512); // total blocks for FAT16 or FAT32 totalBlocks = fbs->totalSectors16 ? fbs->totalSectors16 : fbs->totalSectors32; // total data blocks clusterCount = totalBlocks - (m_dataStartBlock - volumeStartBlock); // divide by cluster size to get cluster count clusterCount >>= m_clusterSizeShift; m_lastCluster = clusterCount + 1; // Indicate unknown number of free clusters. setFreeClusterCount(-1); // FAT type is determined by cluster count if (clusterCount < 4085) { m_fatType = 12; if (!FAT12_SUPPORT) { DBG_FAIL_MACRO; goto fail; } } else if (clusterCount < 65525) { m_fatType = 16; } else { m_rootDirStart = fbs->fat32RootCluster; m_fatType = 32; } return true; fail: return false; } //------------------------------------------------------------------------------ bool FatVolume::wipe(print_t* pr) { cache_t* cache; uint16_t count; uint32_t lbn; if (!fatType()) { DBG_FAIL_MACRO; goto fail; } cache = cacheClear(); if (!cache) { DBG_FAIL_MACRO; goto fail; } memset(cache->data, 0, 512); // Zero root. if (fatType() == 32) { lbn = clusterFirstBlock(m_rootDirStart); count = m_blocksPerCluster; } else { lbn = m_rootDirStart; count = m_rootDirEntryCount/16; } for (uint32_t n = 0; n < count; n++) { if (!writeBlock(lbn + n, cache->data)) { DBG_FAIL_MACRO; goto fail; } } // Clear FATs. count = 2*m_blocksPerFat; lbn = m_fatStartBlock; for (uint32_t nb = 0; nb < count; nb++) { if (pr && (nb & 0XFF) == 0) { pr->write('.'); } if (!writeBlock(lbn + nb, cache->data)) { DBG_FAIL_MACRO; goto fail; } } // Reserve first two clusters. if (fatType() == 32) { cache->fat32[0] = 0x0FFFFFF8; cache->fat32[1] = 0x0FFFFFFF; } else if (fatType() == 16) { cache->fat16[0] = 0XFFF8; cache->fat16[1] = 0XFFFF; } else if (FAT12_SUPPORT && fatType() == 12) { cache->fat32[0] = 0XFFFFF8; } else { DBG_FAIL_MACRO; goto fail; } if (!writeBlock(m_fatStartBlock, cache->data) || !writeBlock(m_fatStartBlock + m_blocksPerFat, cache->data)) { DBG_FAIL_MACRO; goto fail; } if (fatType() == 32) { // Reserve root cluster. if (!fatPutEOC(m_rootDirStart) || !cacheSync()) { DBG_FAIL_MACRO; goto fail; } } if (pr) { pr->write('\r'); pr->write('\n'); } m_fatType = 0; return true; fail: m_fatType = 0; return false; }