try: from typing import Callable, Optional, Tuple except ImportError: pass from micropython import const import kmk.handlers.stock as handlers from kmk.consts import UnicodeMode from kmk.key_validators import key_seq_sleep_validator, unicode_mode_key_validator from kmk.types import UnicodeModeKeyMeta from kmk.utils import Debug # Type aliases / forward declaration; can't use the proper types because of circular imports. Keyboard = object Key = object class KeyType: SIMPLE = const(0) MODIFIER = const(1) CONSUMER = const(2) MOUSE = const(3) FIRST_KMK_INTERNAL_KEY = const(1000) NEXT_AVAILABLE_KEY = 1000 ALL_ALPHAS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ALL_NUMBERS = '1234567890' # since KC.1 isn't valid Python, alias to KC.N1 ALL_NUMBER_ALIASES = tuple(f'N{x}' for x in ALL_NUMBERS) debug = Debug(__name__) class Axis: def __init__(self, code: int) -> None: self.code = code self.delta = 0 def __repr__(self) -> str: return f'Axis(code={self.code}, delta={self.delta})' def move(self, keyboard: Keyboard, delta: int): self.delta += delta if self.delta: keyboard.axes.add(self) keyboard.hid_pending = True else: keyboard.axes.discard(self) class AX: W = Axis(2) X = Axis(0) Y = Axis(1) def maybe_make_key( code: Optional[int], names: Tuple[str, ...], *args, **kwargs, ) -> Callable[[str], Key]: def closure(candidate): if candidate in names: return make_key(code=code, names=names, *args, **kwargs) return closure def maybe_make_argumented_key( validator=lambda *validator_args, **validator_kwargs: object(), names: Tuple[str, ...] = tuple(), # NOQA *constructor_args, **constructor_kwargs, ) -> Callable[[str], Key]: def closure(candidate): if candidate in names: return make_argumented_key( validator, names, *constructor_args, **constructor_kwargs ) return closure def maybe_make_no_key(candidate: str) -> Optional[Key]: # NO and TRNS are functionally identical in how they (don't) mutate # the state, but are tracked semantically separately, so create # two keys with the exact same functionality keys = ( ('NO', 'XXXXXXX'), ('TRANSPARENT', 'TRNS'), ) for names in keys: if candidate in names: return make_key( names=names, on_press=handlers.passthrough, on_release=handlers.passthrough, ) def maybe_make_alpha_key(candidate: str) -> Optional[Key]: if len(candidate) != 1: return candidate_upper = candidate.upper() if candidate_upper in ALL_ALPHAS: return make_key( code=4 + ALL_ALPHAS.index(candidate_upper), names=(candidate_upper, candidate.lower()), ) def maybe_make_numeric_key(candidate: str) -> Optional[Key]: if candidate in ALL_NUMBERS or candidate in ALL_NUMBER_ALIASES: try: offset = ALL_NUMBERS.index(candidate) except ValueError: offset = ALL_NUMBER_ALIASES.index(candidate) return make_key( code=30 + offset, names=(ALL_NUMBERS[offset], ALL_NUMBER_ALIASES[offset]), ) def maybe_make_mod_key(candidate: str) -> Optional[Key]: # MEH = LCTL | LALT | LSFT # HYPR = LCTL | LALT | LSFT | LGUI mods = ( (0x01, ('LEFT_CONTROL', 'LCTRL', 'LCTL')), (0x02, ('LEFT_SHIFT', 'LSHIFT', 'LSFT')), (0x04, ('LEFT_ALT', 'LALT', 'LOPT')), (0x08, ('LEFT_SUPER', 'LGUI', 'LCMD', 'LWIN')), (0x10, ('RIGHT_CONTROL', 'RCTRL', 'RCTL')), (0x20, ('RIGHT_SHIFT', 'RSHIFT', 'RSFT')), (0x40, ('RIGHT_ALT', 'RALT', 'ROPT')), (0x80, ('RIGHT_SUPER', 'RGUI', 'RCMD', 'RWIN')), (0x07, ('MEH',)), (0x0F, ('HYPER', 'HYPR')), ) for code, names in mods: if candidate in names: return make_key(code=code, names=names, type=KeyType.MODIFIER) def maybe_make_more_ascii(candidate: str) -> Optional[Key]: codes = ( (40, ('ENTER', 'ENT', '\n')), (41, ('ESCAPE', 'ESC')), (42, ('BACKSPACE', 'BSPACE', 'BSPC', 'BKSP')), (43, ('TAB', '\t')), (44, ('SPACE', 'SPC', ' ')), (45, ('MINUS', 'MINS', '-')), (46, ('EQUAL', 'EQL', '=')), (47, ('LBRACKET', 'LBRC', '[')), (48, ('RBRACKET', 'RBRC', ']')), (49, ('BACKSLASH', 'BSLASH', 'BSLS', '\\')), (51, ('SEMICOLON', 'SCOLON', 'SCLN', ';')), (52, ('QUOTE', 'QUOT', "'")), (53, ('GRAVE', 'GRV', 'ZKHK', '`')), (54, ('COMMA', 'COMM', ',')), (55, ('DOT', '.')), (56, ('SLASH', 'SLSH', '/')), ) for code, names in codes: if candidate in names: return make_key(code=code, names=names) def maybe_make_fn_key(candidate: str) -> Optional[Key]: codes = ( (58, ('F1',)), (59, ('F2',)), (60, ('F3',)), (61, ('F4',)), (62, ('F5',)), (63, ('F6',)), (64, ('F7',)), (65, ('F8',)), (66, ('F9',)), (67, ('F10',)), (68, ('F11',)), (69, ('F12',)), (104, ('F13',)), (105, ('F14',)), (106, ('F15',)), (107, ('F16',)), (108, ('F17',)), (109, ('F18',)), (110, ('F19',)), (111, ('F20',)), (112, ('F21',)), (113, ('F22',)), (114, ('F23',)), (115, ('F24',)), ) for code, names in codes: if candidate in names: return make_key(code=code, names=names) def maybe_make_navlock_key(candidate: str) -> Optional[Key]: codes = ( (57, ('CAPS_LOCK', 'CAPSLOCK', 'CLCK', 'CAPS')), # FIXME: Investigate whether this key actually works, and # uncomment when/if it does. # (130, ('LOCKING_CAPS', 'LCAP')), (70, ('PRINT_SCREEN', 'PSCREEN', 'PSCR')), (71, ('SCROLL_LOCK', 'SCROLLLOCK', 'SLCK')), # FIXME: Investigate whether this key actually works, and # uncomment when/if it does. # (132, ('LOCKING_SCROLL', 'LSCRL')), (72, ('PAUSE', 'PAUS', 'BRK')), (73, ('INSERT', 'INS')), (74, ('HOME',)), (75, ('PGUP',)), (76, ('DELETE', 'DEL')), (77, ('END',)), (78, ('PGDOWN', 'PGDN')), (79, ('RIGHT', 'RGHT')), (80, ('LEFT',)), (81, ('DOWN',)), (82, ('UP',)), ) for code, names in codes: if candidate in names: return make_key(code=code, names=names) def maybe_make_numpad_key(candidate: str) -> Optional[Key]: codes = ( (83, ('NUM_LOCK', 'NUMLOCK', 'NLCK')), (84, ('KP_SLASH', 'NUMPAD_SLASH', 'PSLS')), (85, ('KP_ASTERISK', 'NUMPAD_ASTERISK', 'PAST')), (86, ('KP_MINUS', 'NUMPAD_MINUS', 'PMNS')), (87, ('KP_PLUS', 'NUMPAD_PLUS', 'PPLS')), (88, ('KP_ENTER', 'NUMPAD_ENTER', 'PENT')), (89, ('KP_1', 'P1', 'NUMPAD_1')), (90, ('KP_2', 'P2', 'NUMPAD_2')), (91, ('KP_3', 'P3', 'NUMPAD_3')), (92, ('KP_4', 'P4', 'NUMPAD_4')), (93, ('KP_5', 'P5', 'NUMPAD_5')), (94, ('KP_6', 'P6', 'NUMPAD_6')), (95, ('KP_7', 'P7', 'NUMPAD_7')), (96, ('KP_8', 'P8', 'NUMPAD_8')), (97, ('KP_9', 'P9', 'NUMPAD_9')), (98, ('KP_0', 'P0', 'NUMPAD_0')), (99, ('KP_DOT', 'PDOT', 'NUMPAD_DOT')), (103, ('KP_EQUAL', 'PEQL', 'NUMPAD_EQUAL')), (133, ('KP_COMMA', 'PCMM', 'NUMPAD_COMMA')), (134, ('KP_EQUAL_AS400', 'NUMPAD_EQUAL_AS400')), ) for code, names in codes: if candidate in names: return make_key(code=code, names=names) def maybe_make_shifted_key(candidate: str) -> Optional[Key]: codes = ( (30, ('EXCLAIM', 'EXLM', '!')), (31, ('AT', '@')), (32, ('HASH', 'POUND', '#')), (33, ('DOLLAR', 'DLR', '$')), (34, ('PERCENT', 'PERC', '%')), (35, ('CIRCUMFLEX', 'CIRC', '^')), (36, ('AMPERSAND', 'AMPR', '&')), (37, ('ASTERISK', 'ASTR', '*')), (38, ('LEFT_PAREN', 'LPRN', '(')), (39, ('RIGHT_PAREN', 'RPRN', ')')), (45, ('UNDERSCORE', 'UNDS', '_')), (46, ('PLUS', '+')), (47, ('LEFT_CURLY_BRACE', 'LCBR', '{')), (48, ('RIGHT_CURLY_BRACE', 'RCBR', '}')), (49, ('PIPE', '|')), (51, ('COLON', 'COLN', ':')), (52, ('DOUBLE_QUOTE', 'DQUO', 'DQT', '"')), (53, ('TILDE', 'TILD', '~')), (54, ('LEFT_ANGLE_BRACKET', 'LABK', '<')), (55, ('RIGHT_ANGLE_BRACKET', 'RABK', '>')), (56, ('QUESTION', 'QUES', '?')), ) for code, names in codes: if candidate in names: return make_key(code=code, names=names, has_modifiers={KC.LSFT.code}) def maybe_make_international_key(candidate: str) -> Optional[Key]: codes = ( (50, ('NONUS_HASH', 'NUHS')), (100, ('NONUS_BSLASH', 'NUBS')), (101, ('APP', 'APPLICATION', 'SEL', 'WINMENU')), (135, ('INT1', 'RO')), (136, ('INT2', 'KANA')), (137, ('INT3', 'JYEN')), (138, ('INT4', 'HENK')), (139, ('INT5', 'MHEN')), (140, ('INT6',)), (141, ('INT7',)), (142, ('INT8',)), (143, ('INT9',)), (144, ('LANG1', 'HAEN')), (145, ('LANG2', 'HAEJ')), (146, ('LANG3',)), (147, ('LANG4',)), (148, ('LANG5',)), (149, ('LANG6',)), (150, ('LANG7',)), (151, ('LANG8',)), (152, ('LANG9',)), ) for code, names in codes: if candidate in names: return make_key(code=code, names=names) def maybe_make_unicode_key(candidate: str) -> Optional[Key]: keys = ( ( ('UC_MODE_NOOP', 'UC_DISABLE'), handlers.uc_mode_pressed, UnicodeModeKeyMeta(UnicodeMode.NOOP), ), ( ('UC_MODE_LINUX', 'UC_MODE_IBUS'), handlers.uc_mode_pressed, UnicodeModeKeyMeta(UnicodeMode.IBUS), ), ( ('UC_MODE_MACOS', 'UC_MODE_OSX', 'US_MODE_RALT'), handlers.uc_mode_pressed, UnicodeModeKeyMeta(UnicodeMode.RALT), ), ( ('UC_MODE_WINC',), handlers.uc_mode_pressed, UnicodeModeKeyMeta(UnicodeMode.WINC), ), ) for names, handler, meta in keys: if candidate in names: return make_key(names=names, on_press=handler, meta=meta) if candidate in ('UC_MODE',): return make_argumented_key( names=('UC_MODE',), validator=unicode_mode_key_validator, on_press=handlers.uc_mode_pressed, ) def maybe_make_firmware_key(candidate: str) -> Optional[Key]: keys = ( ((('BLE_REFRESH',), handlers.ble_refresh)), ((('BLE_DISCONNECT',), handlers.ble_disconnect)), ((('BOOTLOADER',), handlers.bootloader)), ((('DEBUG', 'DBG'), handlers.debug_pressed)), ((('HID_SWITCH', 'HID'), handlers.hid_switch)), ((('RELOAD', 'RLD'), handlers.reload)), ((('RESET',), handlers.reset)), ((('ANY',), handlers.any_pressed)), ) for names, handler in keys: if candidate in names: return make_key(names=names, on_press=handler) KEY_GENERATORS = ( maybe_make_no_key, maybe_make_alpha_key, maybe_make_numeric_key, maybe_make_firmware_key, maybe_make_key( None, ('BKDL',), on_press=handlers.bkdl_pressed, on_release=handlers.bkdl_released, ), maybe_make_key( None, ('GESC', 'GRAVE_ESC'), on_press=handlers.gesc_pressed, on_release=handlers.gesc_released, ), # A dummy key to trigger a sleep_ms call in a sequence of other keys in a # simple sequence macro. maybe_make_argumented_key( key_seq_sleep_validator, ('MACRO_SLEEP_MS', 'SLEEP_IN_SEQ'), on_press=handlers.sleep_pressed, ), maybe_make_mod_key, # More ASCII standard keys maybe_make_more_ascii, # Function Keys maybe_make_fn_key, # Lock Keys, Navigation, etc. maybe_make_navlock_key, # Numpad # FIXME: Investigate whether this key actually works, and # uncomment when/if it does. # maybe_make_key(131, ('LOCKING_NUM', 'LNUM')), maybe_make_numpad_key, # Making life better for folks on tiny keyboards especially: exposes # the 'shifted' keys as raw keys. Under the hood we're still # sending Shift+(whatever key is normally pressed) to get these, so # for example `KC_AT` will hold shift and press 2. maybe_make_shifted_key, # International maybe_make_international_key, maybe_make_unicode_key, ) class KeyAttrDict: # Instead of relying on the uncontrollable availability of a big chunk of # contiguous memory for key caching, we can manually fragment the cache into # reasonably small partitions. The partition size is chosen from the magic # values of CPs hash allocation sizes. # (https://github.com/adafruit/circuitpython/blob/main/py/map.c, 2023-02) __partition_size = 37 __cache = [{}] def __iter__(self): for partition in self.__cache: for name in partition: yield name def __setitem__(self, name: str, key: Key): # Overwrite existing reference. for partition in self.__cache: if name in partition: partition[name] = key return key # Insert new reference. if len(self.__cache[-1]) >= self.__partition_size: self.__cache.append({}) self.__cache[-1][name] = key return key def __getattr__(self, name: str): return self.__getitem__(name) def get(self, name: str, default: Optional[Key] = None): try: return self.__getitem__(name) except Exception: return default def clear(self): self.__cache.clear() self.__cache.append({}) def __getitem__(self, name: str): for partition in self.__cache: if name in partition: return partition[name] for func in KEY_GENERATORS: maybe_key = func(name) if maybe_key: break if not maybe_key: if debug.enabled: debug(f'Invalid key: {name}') return KC.NO if debug.enabled: debug(f'{name}: {maybe_key}') return maybe_key # Global state, will be filled in throughout this file, and # anywhere the user creates custom keys KC = KeyAttrDict() class Key: def __init__( self, code: int, has_modifiers: Optional[list[Key, ...]] = None, no_press: bool = False, no_release: bool = False, on_press: Callable[ [object, Key, Keyboard, ...], None ] = handlers.default_pressed, on_release: Callable[ [object, Key, Keyboard, ...], None ] = handlers.default_released, meta: object = object(), ): self.code = code self.has_modifiers = has_modifiers # cast to bool() in case we get a None value self.no_press = bool(no_press) self.no_release = bool(no_release) self._handle_press = on_press self._handle_release = on_release self.meta = meta def __call__( self, no_press: Optional[bool] = None, no_release: Optional[bool] = None ) -> Key: if no_press is None and no_release is None: return self return type(self)( code=self.code, has_modifiers=self.has_modifiers, no_press=no_press, no_release=no_release, on_press=self._handle_press, on_release=self._handle_release, meta=self.meta, ) def __repr__(self): return f'Key(code={self.code}, has_modifiers={self.has_modifiers})' def on_press(self, keyboard: Keyboard, coord_int: Optional[int] = None) -> None: if hasattr(self, '_pre_press_handlers'): for fn in self._pre_press_handlers: if not fn(self, keyboard, KC, coord_int): return self._handle_press(self, keyboard, KC, coord_int) if hasattr(self, '_post_press_handlers'): for fn in self._post_press_handlers: fn(self, keyboard, KC, coord_int) def on_release(self, keyboard: Keyboard, coord_int: Optional[int] = None) -> None: if hasattr(self, '_pre_release_handlers'): for fn in self._pre_release_handlers: if not fn(self, keyboard, KC, coord_int): return self._handle_release(self, keyboard, KC, coord_int) if hasattr(self, '_post_release_handlers'): for fn in self._post_release_handlers: fn(self, keyboard, KC, coord_int) def clone(self) -> Key: ''' Return a shallow clone of the current key without any pre/post press/release handlers attached. Almost exclusively useful for creating non-colliding keys to use such handlers. ''' return type(self)( code=self.code, has_modifiers=self.has_modifiers, no_press=self.no_press, no_release=self.no_release, on_press=self._handle_press, on_release=self._handle_release, meta=self.meta, ) def before_press_handler(self, fn: Callable[[Key, Keyboard, ...], bool]) -> None: ''' Attach a callback to be run prior to the on_press handler for this key. Receives the following: - self (this Key instance) - state (the current InternalState) - KC (the global KC lookup table, for convenience) - coord_int (an internal integer representation of the matrix coordinate for the pressed key - this is likely not useful to end users, but is provided for consistency with the internal handlers) If return value of the provided callback is evaluated to False, press processing is cancelled. Exceptions are _not_ caught, and will likely crash KMK if not handled within your function. These handlers are run in attachment order: handlers provided by earlier calls of this method will be executed before those provided by later calls. ''' if not hasattr(self, '_pre_press_handlers'): self._pre_press_handlers = [] self._pre_press_handlers.append(fn) def after_press_handler(self, fn: Callable[[Key, Keyboard, ...], bool]) -> None: ''' Attach a callback to be run after the on_release handler for this key. Receives the following: - self (this Key instance) - state (the current InternalState) - KC (the global KC lookup table, for convenience) - coord_int (an internal integer representation of the matrix coordinate for the pressed key - this is likely not useful to end users, but is provided for consistency with the internal handlers) The return value of the provided callback is discarded. Exceptions are _not_ caught, and will likely crash KMK if not handled within your function. These handlers are run in attachment order: handlers provided by earlier calls of this method will be executed before those provided by later calls. ''' if not hasattr(self, '_post_press_handlers'): self._post_press_handlers = [] self._post_press_handlers.append(fn) def before_release_handler(self, fn: Callable[[Key, Keyboard, ...], bool]) -> None: ''' Attach a callback to be run prior to the on_release handler for this key. Receives the following: - self (this Key instance) - state (the current InternalState) - KC (the global KC lookup table, for convenience) - coord_int (an internal integer representation of the matrix coordinate for the pressed key - this is likely not useful to end users, but is provided for consistency with the internal handlers) If return value of the provided callback evaluates to False, the release processing is cancelled. Exceptions are _not_ caught, and will likely crash KMK if not handled within your function. These handlers are run in attachment order: handlers provided by earlier calls of this method will be executed before those provided by later calls. ''' if not hasattr(self, '_pre_release_handlers'): self._pre_release_handlers = [] self._pre_release_handlers.append(fn) def after_release_handler(self, fn: Callable[[Key, Keyboard, ...], bool]) -> None: ''' Attach a callback to be run after the on_release handler for this key. Receives the following: - self (this Key instance) - state (the current InternalState) - KC (the global KC lookup table, for convenience) - coord_int (an internal integer representation of the matrix coordinate for the pressed key - this is likely not useful to end users, but is provided for consistency with the internal handlers) The return value of the provided callback is discarded. Exceptions are _not_ caught, and will likely crash KMK if not handled within your function. These handlers are run in attachment order: handlers provided by earlier calls of this method will be executed before those provided by later calls. ''' if not hasattr(self, '_post_release_handlers'): self._post_release_handlers = [] self._post_release_handlers.append(fn) class ModifierKey(Key): FAKE_CODE = const(-1) def __call__( self, modified_key: Optional[Key] = None, no_press: Optional[bool] = None, no_release: Optional[bool] = None, ) -> Key: if modified_key is None: return super().__call__(no_press=no_press, no_release=no_release) modifiers = set() code = modified_key.code if self.code != ModifierKey.FAKE_CODE: modifiers.add(self.code) if self.has_modifiers: modifiers |= self.has_modifiers if modified_key.has_modifiers: modifiers |= modified_key.has_modifiers if isinstance(modified_key, ModifierKey): if modified_key.code != ModifierKey.FAKE_CODE: modifiers.add(modified_key.code) code = ModifierKey.FAKE_CODE return type(modified_key)( code=code, has_modifiers=modifiers, no_press=no_press, no_release=no_release, on_press=modified_key._handle_press, on_release=modified_key._handle_release, meta=modified_key.meta, ) def __repr__(self): return f'ModifierKey(code={self.code}, has_modifiers={self.has_modifiers})' class ConsumerKey(Key): pass class MouseKey(Key): pass def make_key( code: Optional[int] = None, names: Tuple[str, ...] = tuple(), # NOQA type: KeyType = KeyType.SIMPLE, **kwargs, ) -> Key: ''' Create a new key, aliased by `names` in the KC lookup table. If a code is not specified, the key is assumed to be a custom internal key to be handled in a state callback rather than sent directly to the OS. These codes will autoincrement. Names are globally unique. If a later key is created with the same name as an existing entry in `KC`, it will overwrite the existing entry. Names are case sensitive. All **kwargs are passed to the Key constructor ''' global NEXT_AVAILABLE_KEY if type == KeyType.SIMPLE: constructor = Key elif type == KeyType.MODIFIER: constructor = ModifierKey elif type == KeyType.CONSUMER: constructor = ConsumerKey elif type == KeyType.MOUSE: constructor = MouseKey else: raise ValueError('Unrecognized key type') if code is None: code = NEXT_AVAILABLE_KEY NEXT_AVAILABLE_KEY += 1 elif code >= FIRST_KMK_INTERNAL_KEY: # Try to ensure future auto-generated internal keycodes won't # be overridden by continuing to +1 the sequence from the provided # code NEXT_AVAILABLE_KEY = max(NEXT_AVAILABLE_KEY, code + 1) key = constructor(code=code, **kwargs) for name in names: KC[name] = key return key def make_mod_key(code: int, names: Tuple[str, ...], *args, **kwargs) -> Key: return make_key(code, names, *args, **kwargs, type=KeyType.MODIFIER) def make_shifted_key(code: int, names: Tuple[str, ...]) -> Key: return make_key(code, names, has_modifiers={KC.LSFT.code}) def make_consumer_key(*args, **kwargs) -> Key: return make_key(*args, **kwargs, type=KeyType.CONSUMER) def make_mouse_key(*args, **kwargs) -> Key: return make_key(*args, **kwargs, type=KeyType.MOUSE) # Argumented keys are implicitly internal, so auto-gen of code # is almost certainly the best plan here def make_argumented_key( validator: object = lambda *validator_args, **validator_kwargs: object(), names: Tuple[str, ...] = tuple(), # NOQA *constructor_args, **constructor_kwargs, ) -> Key: global NEXT_AVAILABLE_KEY def _argumented_key(*user_args, **user_kwargs) -> Key: global NEXT_AVAILABLE_KEY meta = validator(*user_args, **user_kwargs) if meta: key = Key( NEXT_AVAILABLE_KEY, meta=meta, *constructor_args, **constructor_kwargs ) NEXT_AVAILABLE_KEY += 1 return key else: raise ValueError( 'Argumented key validator failed for unknown reasons. ' "This may not be the keymap's fault, as a more specific error " 'should have been raised.' ) for name in names: KC[name] = _argumented_key return _argumented_key