keyboard/qmk/lib/lufa/LUFA/DoxygenPages/ProgrammingApps.txt

28 lines
1.9 KiB
Plaintext

/** \file
*
* This file contains special DoxyGen information for the generation of the main page and other special
* documentation pages. It is not a project source file.
*/
/** \page Page_ProgrammingApps Programming an Application into a USB AVR
*
* Once you have built an application, you will need a way to program in the resulting ".HEX" file (and, if your
* application uses EEPROM variables with initial values, also a ".EEP" file) into your USB AVR. Normally, the
* reprogramming of an AVR device must be performed using a special piece of programming hardware, through one of the
* supported AVR programming protocols - ISP, HVSP, HVPP, JTAG, dW or PDI. This can be done through a custom programmer,
* a third party programmer, or an official Atmel AVR tool - for more information, see the <a>atmel.com</a> website.
*
* Alternatively, you can use the bootloader. From the Atmel factory, each USB AVR comes preloaded with the Atmel
* DFU (Device Firmware Update) class bootloader, a small piece of AVR firmware which allows the remainder of the
* AVR to be programmed through a non-standard interface such as the serial USART port, SPI, or (in this case) USB.
* Bootloaders have the advantage of not requiring any special hardware for programming, and cannot usually be erased
* or broken without an external programming device. They have disadvantages however; they cannot change the fuses of
* the AVR (special configuration settings that control the operation of the chip itself) and a small portion of the
* AVR's FLASH program memory must be reserved to contain the bootloader firmware, and thus cannot be used by the
* loaded application.
*
* If you wish to use the DFU bootloader to program in your application, refer to your DFU programmer's documentation.
* Atmel provides a free utility called FLIP which is USB AVR compatible, and an open source (Linux compatible)
* alternative exists called "dfu-programmer".
*/