keyboard/qmk/lib/chibios-contrib/testhal/NRF52/NRF52832/RADIO-ESB/nrf52_radio.c

1112 lines
36 KiB
C
Raw Normal View History

/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
* Enhanced ShockBurst proprietary protocol to ChibiOS port
*
* ported on: 25/10/2018, by andru
*
*/
#include <stdint.h>
#include <string.h>
#include "ch.h"
#include "hal.h"
#include "nrf52_radio.h"
#define BIT_MASK_UINT_8(x) (0xFF >> (8 - (x)))
#define NRF52_PIPE_COUNT 9
#define RADIO_SHORTS_COMMON ( RADIO_SHORTS_READY_START_Msk | RADIO_SHORTS_END_DISABLE_Msk | \
RADIO_SHORTS_ADDRESS_RSSISTART_Msk | RADIO_SHORTS_DISABLED_RSSISTOP_Msk )
// Constant parameters
#define RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS (48) /**< 2MBit RX wait for ack timeout value. Smallest reliable value - 43 */
#define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS (64) /**< 1MBit RX wait for ack timeout value. Smallest reliable value - 59 */
#define NRF52_ADDR_UPDATE_MASK_BASE0 (1 << 0) /*< Mask value to signal updating BASE0 radio address. */
#define NRF52_ADDR_UPDATE_MASK_BASE1 (1 << 1) /*< Mask value to signal updating BASE1 radio address. */
#define NRF52_ADDR_UPDATE_MASK_PREFIX (1 << 2) /*< Mask value to signal updating radio prefixes */
#define NRF52_PID_RESET_VALUE 0xFF /**< Invalid PID value which is guaranteed to not collide with any valid PID value. */
#define NRF52_PID_MAX 3 /**< Maximum value for PID. */
#define NRF52_CRC_RESET_VALUE 0xFFFF /**< CRC reset value*/
#ifndef NRF52_RADIO_USE_TIMER0
#define NRF52_RADIO_USE_TIMER0 FALSE
#endif
#ifndef NRF52_RADIO_USE_TIMER1
#define NRF52_RADIO_USE_TIMER1 FALSE
#endif
#ifndef NRF52_RADIO_USE_TIMER2
#define NRF52_RADIO_USE_TIMER2 FALSE
#endif
#ifndef NRF52_RADIO_USE_TIMER3
#define NRF52_RADIO_USE_TIMER3 FALSE
#endif
#ifndef NRF52_RADIO_USE_TIMER4
#define NRF52_RADIO_USE_TIMER4 FALSE
#endif
#ifndef NRF52_RADIO_IRQ_PRIORITY
#define NRF52_RADIO_IRQ_PRIORITY 3 /**< RADIO interrupt priority. */
#endif
#ifndef NRF52_RADIO_PPI_TIMER_START
#error "PPI channel NRF52_RADIO_PPI_TIMER_START need to be defined"
#endif
#ifndef NRF52_RADIO_PPI_TIMER_STOP
#error "PPI channel NRF52_RADIO_PPI_TIMER_STOP need to be defined"
#endif
#ifndef NRF52_RADIO_PPI_RX_TIMEOUT
#error "PPI channel NRF52_RADIO_PPI_RX_TIMEOUT need to be defined"
#endif
#ifndef NRF52_RADIO_PPI_TX_START
#error "PPI channel NRF52_RADIO_PPI_TX_START need to be defined"
#endif
#if (NRF52_RADIO_USE_TIMER0 == FALSE) && (NRF52_RADIO_USE_TIMER1 == FALSE) && \
(NRF52_RADIO_USE_TIMER2 == FALSE) && (NRF52_RADIO_USE_TIMER3 == FALSE) && \
(NRF52_RADIO_USE_TIMER4 == FALSE)
#error "At least one hardware TIMER must be defined"
#endif
#ifndef NRF52_RADIO_INTTHD_PRIORITY
#error "Interrupt handle thread priority need to be defined"
#endif
#ifndef NRF52_RADIO_EVTTHD_PRIORITY
#error "Event thread priority need to be defined"
#endif
#define VERIFY_PAYLOAD_LENGTH(p) \
do \
{ \
if(p->length == 0 || \
p->length > NRF52_MAX_PAYLOAD_LENGTH || \
(RFD1.config.protocol == NRF52_PROTOCOL_ESB && \
p->length > RFD1.config.payload_length)) \
{ \
return NRF52_ERROR_INVALID_LENGTH; \
} \
}while(0)
//Structure holding pipe info PID and CRC and ack payload.
typedef struct
{
uint16_t m_crc;
uint8_t m_pid;
uint8_t m_ack_payload;
} pipe_info_t;
// First in first out queue of payloads to be transmitted.
typedef struct
{
nrf52_payload_t * p_payload[NRF52_TX_FIFO_SIZE]; /**< Pointer to the actual queue. */
uint32_t entry_point; /**< Current start of queue. */
uint32_t exit_point; /**< Current end of queue. */
uint32_t count; /**< Current number of elements in the queue. */
} nrf52_payload_tx_fifo_t;
// First in first out queue of received payloads.
typedef struct
{
nrf52_payload_t * p_payload[NRF52_RX_FIFO_SIZE]; /**< Pointer to the actual queue. */
uint32_t entry_point; /**< Current start of queue. */
uint32_t exit_point; /**< Current end of queue. */
uint32_t count; /**< Current number of elements in the queue. */
} nrf52_payload_rx_fifo_t;
// These function pointers are changed dynamically, depending on protocol configuration and state.
//static void (*on_radio_end)(RFDriver *rfp) = NULL;
static void (*set_rf_payload_format)(RFDriver *rfp, uint32_t payload_length) = NULL;
// The following functions are assigned to the function pointers above.
static void on_radio_disabled_tx_noack(RFDriver *rfp);
static void on_radio_disabled_tx(RFDriver *rfp);
static void on_radio_disabled_tx_wait_for_ack(RFDriver *rfp);
static void on_radio_disabled_rx(RFDriver *rfp);
static void on_radio_disabled_rx_ack(RFDriver *rfp);
static volatile uint16_t wait_for_ack_timeout_us;
static nrf52_payload_t * p_current_payload;
// TX FIFO
static nrf52_payload_t tx_fifo_payload[NRF52_TX_FIFO_SIZE];
static nrf52_payload_tx_fifo_t tx_fifo;
// RX FIFO
static nrf52_payload_t rx_fifo_payload[NRF52_RX_FIFO_SIZE];
static nrf52_payload_rx_fifo_t rx_fifo;
// Payload buffers
static uint8_t tx_payload_buffer[NRF52_MAX_PAYLOAD_LENGTH + 2];
static uint8_t rx_payload_buffer[NRF52_MAX_PAYLOAD_LENGTH + 2];
static uint8_t pids[NRF52_PIPE_COUNT];
static pipe_info_t rx_pipe_info[NRF52_PIPE_COUNT];
// disable and events semaphores.
static binary_semaphore_t disable_sem;
static binary_semaphore_t events_sem;
RFDriver RFD1;
// Function to do bytewise bit-swap on a unsigned 32 bit value
static uint32_t bytewise_bit_swap(uint8_t const * p_inp) {
uint32_t inp = (*(uint32_t*)p_inp);
return __REV((uint32_t)__RBIT(inp)); //lint -esym(628, __rev) -esym(526, __rev) -esym(628, __rbit) -esym(526, __rbit) */
}
// Internal function to convert base addresses from nRF24L type addressing to nRF52 type addressing
static uint32_t addr_conv(uint8_t const* p_addr) {
return __REV(bytewise_bit_swap(p_addr)); //lint -esym(628, __rev) -esym(526, __rev) */
}
static thread_t *rfEvtThread_p;
static THD_WORKING_AREA(waRFEvtThread, 64);
static THD_FUNCTION(rfEvtThread, arg) {
(void)arg;
chRegSetThreadName("rfevent");
while (!chThdShouldTerminateX()) {
chBSemWait(&events_sem);
nrf52_int_flags_t interrupts = RFD1.flags;
RFD1.flags = 0;
if (interrupts & NRF52_INT_TX_SUCCESS_MSK) {
chEvtBroadcastFlags(&RFD1.eventsrc, (eventflags_t) NRF52_EVENT_TX_SUCCESS);
}
if (interrupts & NRF52_INT_TX_FAILED_MSK) {
chEvtBroadcastFlags(&RFD1.eventsrc, (eventflags_t) NRF52_EVENT_TX_FAILED);
}
if (interrupts & NRF52_INT_RX_DR_MSK) {
chEvtBroadcastFlags(&RFD1.eventsrc, (eventflags_t) NRF52_EVENT_RX_RECEIVED);
}
}
chThdExit((msg_t) 0);
}
static thread_t *rfIntThread_p;
static THD_WORKING_AREA(waRFIntThread, 64);
static THD_FUNCTION(rfIntThread, arg) {
(void)arg;
chRegSetThreadName("rfint");
while (!chThdShouldTerminateX()) {
chBSemWait(&disable_sem);
switch (RFD1.state) {
case NRF52_STATE_PTX_TX:
on_radio_disabled_tx_noack(&RFD1);
break;
case NRF52_STATE_PTX_TX_ACK:
on_radio_disabled_tx(&RFD1);
break;
case NRF52_STATE_PTX_RX_ACK:
on_radio_disabled_tx_wait_for_ack(&RFD1);
break;
case NRF52_STATE_PRX:
on_radio_disabled_rx(&RFD1);
break;
case NRF52_STATE_PRX_SEND_ACK:
on_radio_disabled_rx_ack(&RFD1);
break;
default:
break;
}
}
chThdExit((msg_t) 0);
}
static void serve_radio_interrupt(RFDriver *rfp) {
(void) rfp;
if ((NRF_RADIO->INTENSET & RADIO_INTENSET_READY_Msk) && NRF_RADIO->EVENTS_READY) {
NRF_RADIO->EVENTS_READY = 0;
(void) NRF_RADIO->EVENTS_READY;
}
if ((NRF_RADIO->INTENSET & RADIO_INTENSET_DISABLED_Msk) && NRF_RADIO->EVENTS_DISABLED) {
NRF_RADIO->EVENTS_DISABLED = 0;
(void) NRF_RADIO->EVENTS_DISABLED;
chSysLockFromISR();
chBSemSignalI(&disable_sem);
chSysUnlockFromISR();
}
}
/**
* @brief RADIO events interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(Vector44) {
OSAL_IRQ_PROLOGUE();
serve_radio_interrupt(&RFD1);
OSAL_IRQ_EPILOGUE();
}
static void set_rf_payload_format_esb_dpl(RFDriver *rfp, uint32_t payload_length) {
(void)payload_length;
#if (NRF52_MAX_PAYLOAD_LENGTH <= 32)
// Using 6 bits for length
NRF_RADIO->PCNF0 = (0 << RADIO_PCNF0_S0LEN_Pos) |
(6 << RADIO_PCNF0_LFLEN_Pos) |
(3 << RADIO_PCNF0_S1LEN_Pos) ;
#else
// Using 8 bits for length
NRF_RADIO->PCNF0 = (0 << RADIO_PCNF0_S0LEN_Pos) |
(8 << RADIO_PCNF0_LFLEN_Pos) |
(3 << RADIO_PCNF0_S1LEN_Pos) ;
#endif
NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
(RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
((rfp->config.address.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
(0 << RADIO_PCNF1_STATLEN_Pos) |
(NRF52_MAX_PAYLOAD_LENGTH << RADIO_PCNF1_MAXLEN_Pos);
}
static void set_rf_payload_format_esb(RFDriver *rfp, uint32_t payload_length) {
NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |
(0 << RADIO_PCNF0_LFLEN_Pos) |
(1 << RADIO_PCNF0_S1LEN_Pos);
NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
(RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
((rfp->config.address.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
(payload_length << RADIO_PCNF1_STATLEN_Pos) |
(payload_length << RADIO_PCNF1_MAXLEN_Pos);
}
/* Set BASE0 and BASE1 addresses & prefixes registers
* NRF52 { prefixes[0], base0_addr[0], base0_addr[1], base0_addr[2], base0_addr[3] } ==
* NRF24 { addr[0], addr[1], addr[2], addr[3], addr[4] }
*/
static void set_addresses(RFDriver *rfp, uint8_t update_mask) {
if (update_mask & NRF52_ADDR_UPDATE_MASK_BASE0) {
NRF_RADIO->BASE0 = addr_conv(rfp->config.address.base_addr_p0);
NRF_RADIO->DAB[0] = addr_conv(rfp->config.address.base_addr_p0);
}
if (update_mask & NRF52_ADDR_UPDATE_MASK_BASE1) {
NRF_RADIO->BASE1 = addr_conv(rfp->config.address.base_addr_p1);
NRF_RADIO->DAB[1] = addr_conv(rfp->config.address.base_addr_p1);
}
if (update_mask & NRF52_ADDR_UPDATE_MASK_PREFIX) {
NRF_RADIO->PREFIX0 = bytewise_bit_swap(&rfp->config.address.pipe_prefixes[0]);
NRF_RADIO->DAP[0] = bytewise_bit_swap(&rfp->config.address.pipe_prefixes[0]);
NRF_RADIO->PREFIX1 = bytewise_bit_swap(&rfp->config.address.pipe_prefixes[4]);
NRF_RADIO->DAP[1] = bytewise_bit_swap(&rfp->config.address.pipe_prefixes[4]);
}
}
static void set_tx_power(RFDriver *rfp) {
NRF_RADIO->TXPOWER = rfp->config.tx_power << RADIO_TXPOWER_TXPOWER_Pos;
}
static void set_bitrate(RFDriver *rfp) {
NRF_RADIO->MODE = rfp->config.bitrate << RADIO_MODE_MODE_Pos;
switch (rfp->config.bitrate) {
case NRF52_BITRATE_2MBPS:
wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS;
break;
case NRF52_BITRATE_1MBPS:
wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS;
break;
}
}
static void set_protocol(RFDriver *rfp) {
switch (rfp->config.protocol) {
case NRF52_PROTOCOL_ESB_DPL:
set_rf_payload_format = set_rf_payload_format_esb_dpl;
break;
case NRF52_PROTOCOL_ESB:
set_rf_payload_format = set_rf_payload_format_esb;
break;
}
}
static void set_crc(RFDriver *rfp) {
NRF_RADIO->CRCCNF = rfp->config.crc << RADIO_CRCCNF_LEN_Pos;
if (rfp->config.crc == RADIO_CRCCNF_LEN_Two)
{
NRF_RADIO->CRCINIT = 0xFFFFUL; // Initial value
NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: x^16+x^12^x^5+1
}
else if (rfp->config.crc == RADIO_CRCCNF_LEN_One)
{
NRF_RADIO->CRCINIT = 0xFFUL; // Initial value
NRF_RADIO->CRCPOLY = 0x107UL; // CRC poly: x^8+x^2^x^1+1
}
}
static void ppi_init(RFDriver *rfp) {
NRF_PPI->CH[NRF52_RADIO_PPI_TIMER_START].EEP = (uint32_t)&NRF_RADIO->EVENTS_READY;
NRF_PPI->CH[NRF52_RADIO_PPI_TIMER_START].TEP = (uint32_t)&rfp->timer->TASKS_START;
NRF_PPI->CH[NRF52_RADIO_PPI_TIMER_STOP].EEP = (uint32_t)&NRF_RADIO->EVENTS_ADDRESS;
NRF_PPI->CH[NRF52_RADIO_PPI_TIMER_STOP].TEP = (uint32_t)&rfp->timer->TASKS_STOP;
NRF_PPI->CH[NRF52_RADIO_PPI_RX_TIMEOUT].EEP = (uint32_t)&rfp->timer->EVENTS_COMPARE[0];
NRF_PPI->CH[NRF52_RADIO_PPI_RX_TIMEOUT].TEP = (uint32_t)&NRF_RADIO->TASKS_DISABLE;
NRF_PPI->CH[NRF52_RADIO_PPI_TX_START].EEP = (uint32_t)&rfp->timer->EVENTS_COMPARE[1];
NRF_PPI->CH[NRF52_RADIO_PPI_TX_START].TEP = (uint32_t)&NRF_RADIO->TASKS_TXEN;
}
static void set_parameters(RFDriver *rfp) {
set_tx_power(rfp);
set_bitrate(rfp);
set_protocol(rfp);
set_crc(rfp);
set_rf_payload_format(rfp, rfp->config.payload_length);
}
static void reset_fifo(void) {
tx_fifo.entry_point = 0;
tx_fifo.exit_point = 0;
tx_fifo.count = 0;
rx_fifo.entry_point = 0;
rx_fifo.exit_point = 0;
rx_fifo.count = 0;
}
static void init_fifo(void) {
uint8_t i;
reset_fifo();
for (i = 0; i < NRF52_TX_FIFO_SIZE; i++) {
tx_fifo.p_payload[i] = &tx_fifo_payload[i];
}
for (i = 0; i < NRF52_RX_FIFO_SIZE; i++) {
rx_fifo.p_payload[i] = &rx_fifo_payload[i];
}
}
static void tx_fifo_remove_last(void) {
if (tx_fifo.count > 0) {
nvicDisableVector(RADIO_IRQn);
tx_fifo.count--;
if (++tx_fifo.exit_point >= NRF52_TX_FIFO_SIZE) {
tx_fifo.exit_point = 0;
}
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
}
}
/** @brief Function to push the content of the rx_buffer to the RX FIFO.
*
* The module will point the register NRF_RADIO->PACKETPTR to a buffer for receiving packets.
* After receiving a packet the module will call this function to copy the received data to
* the RX FIFO.
*
* @param pipe Pipe number to set for the packet.
* @param pid Packet ID.
*
* @retval true Operation successful.
* @retval false Operation failed.
*/
static bool rx_fifo_push_rfbuf(RFDriver *rfp, uint8_t pipe, uint8_t pid) {
if (rx_fifo.count < NRF52_RX_FIFO_SIZE) {
if (rfp->config.protocol == NRF52_PROTOCOL_ESB_DPL) {
if (rx_payload_buffer[0] > NRF52_MAX_PAYLOAD_LENGTH) {
return false;
}
rx_fifo.p_payload[rx_fifo.entry_point]->length = rx_payload_buffer[0];
}
else if (rfp->state == NRF52_STATE_PTX_RX_ACK) {
// Received packet is an acknowledgment
rx_fifo.p_payload[rx_fifo.entry_point]->length = 0;
}
else {
rx_fifo.p_payload[rx_fifo.entry_point]->length = rfp->config.payload_length;
}
memcpy(rx_fifo.p_payload[rx_fifo.entry_point]->data, &rx_payload_buffer[2],
rx_fifo.p_payload[rx_fifo.entry_point]->length);
rx_fifo.p_payload[rx_fifo.entry_point]->pipe = pipe;
rx_fifo.p_payload[rx_fifo.entry_point]->rssi = NRF_RADIO->RSSISAMPLE;
rx_fifo.p_payload[rx_fifo.entry_point]->pid = pid;
if (++rx_fifo.entry_point >= NRF52_RX_FIFO_SIZE) {
rx_fifo.entry_point = 0;
}
rx_fifo.count++;
return true;
}
return false;
}
static void timer_init(RFDriver *rfp) {
// Configure the system timer with a 1 MHz base frequency
rfp->timer->PRESCALER = 4;
rfp->timer->BITMODE = TIMER_BITMODE_BITMODE_16Bit;
rfp->timer->SHORTS = TIMER_SHORTS_COMPARE1_CLEAR_Msk | TIMER_SHORTS_COMPARE1_STOP_Msk;
}
static void start_tx_transaction(RFDriver *rfp) {
bool ack;
rfp->tx_attempt = 1;
rfp->tx_remaining = rfp->config.retransmit.count;
// Prepare the payload
p_current_payload = tx_fifo.p_payload[tx_fifo.exit_point];
// Handling ack if noack is set to false or if selctive auto ack is turned turned off
ack = !p_current_payload->noack || !rfp->config.selective_auto_ack;
switch (rfp->config.protocol) {
case NRF52_PROTOCOL_ESB:
set_rf_payload_format(rfp, p_current_payload->length);
tx_payload_buffer[0] = p_current_payload->pid;
tx_payload_buffer[1] = 0;
memcpy(&tx_payload_buffer[2], p_current_payload->data, p_current_payload->length);
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_RXEN_Msk;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
// Configure the retransmit counter
rfp->tx_remaining = rfp->config.retransmit.count;
rfp->state = NRF52_STATE_PTX_TX_ACK;
break;
case NRF52_PROTOCOL_ESB_DPL:
tx_payload_buffer[0] = p_current_payload->length;
tx_payload_buffer[1] = p_current_payload->pid << 1;
tx_payload_buffer[1] |= ack ? 0x00 : 0x01;
memcpy(&tx_payload_buffer[2], p_current_payload->data, p_current_payload->length);
if (ack) {
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_RXEN_Msk;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
// Configure the retransmit counter
rfp->tx_remaining = rfp->config.retransmit.count;
rfp->state = NRF52_STATE_PTX_TX_ACK;
}
else {
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
rfp->state = NRF52_STATE_PTX_TX;
}
break;
}
NRF_RADIO->TXADDRESS = p_current_payload->pipe;
NRF_RADIO->RXADDRESSES = 1 << p_current_payload->pipe;
NRF_RADIO->FREQUENCY = rfp->config.address.rf_channel;
NRF_RADIO->PACKETPTR = (uint32_t)tx_payload_buffer;
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
(void)NRF_RADIO->EVENTS_READY;
(void)NRF_RADIO->EVENTS_DISABLED;
nvicClearPending(RADIO_IRQn);
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
NRF_RADIO->TASKS_TXEN = 1;
}
static void on_radio_disabled_tx_noack(RFDriver *rfp) {
rfp->flags |= NRF52_INT_TX_SUCCESS_MSK;
tx_fifo_remove_last();
chBSemSignal(&events_sem);
if (tx_fifo.count == 0) {
rfp->state = NRF52_STATE_IDLE;
}
else {
start_tx_transaction(rfp);
}
}
static void on_radio_disabled_tx(RFDriver *rfp) {
// Remove the DISABLED -> RXEN shortcut, to make sure the radio stays
// disabled after the RX window
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON;
// Make sure the timer is started the next time the radio is ready,
// and that it will disable the radio automatically if no packet is
// received by the time defined in m_wait_for_ack_timeout_us
rfp->timer->CC[0] = wait_for_ack_timeout_us + 130;
rfp->timer->CC[1] = rfp->config.retransmit.delay - 130;
rfp->timer->TASKS_CLEAR = 1;
rfp->timer->EVENTS_COMPARE[0] = 0;
rfp->timer->EVENTS_COMPARE[1] = 0;
(void)rfp->timer->EVENTS_COMPARE[0];
(void)rfp->timer->EVENTS_COMPARE[1];
NRF_PPI->CHENSET = (1 << NRF52_RADIO_PPI_TIMER_START) |
(1 << NRF52_RADIO_PPI_RX_TIMEOUT) |
(1 << NRF52_RADIO_PPI_TIMER_STOP);
NRF_PPI->CHENCLR = (1 << NRF52_RADIO_PPI_TX_START);
NRF_RADIO->EVENTS_END = 0;
(void)NRF_RADIO->EVENTS_END;
if (rfp->config.protocol == NRF52_PROTOCOL_ESB) {
set_rf_payload_format(rfp, 0);
}
NRF_RADIO->PACKETPTR = (uint32_t)rx_payload_buffer;
rfp->state = NRF52_STATE_PTX_RX_ACK;
}
static void on_radio_disabled_tx_wait_for_ack(RFDriver *rfp) {
// This marks the completion of a TX_RX sequence (TX with ACK)
// Make sure the timer will not deactivate the radio if a packet is received
NRF_PPI->CHENCLR = (1 << NRF52_RADIO_PPI_TIMER_START) |
(1 << NRF52_RADIO_PPI_RX_TIMEOUT) |
(1 << NRF52_RADIO_PPI_TIMER_STOP);
// If the radio has received a packet and the CRC status is OK
if (NRF_RADIO->EVENTS_END && NRF_RADIO->CRCSTATUS != 0) {
rfp->timer->TASKS_STOP = 1;
NRF_PPI->CHENCLR = (1 << NRF52_RADIO_PPI_TX_START);
rfp->flags |= NRF52_INT_TX_SUCCESS_MSK;
rfp->tx_attempt++;// = rfp->config.retransmit.count - rfp->tx_remaining + 1;
tx_fifo_remove_last();
if (rfp->config.protocol != NRF52_PROTOCOL_ESB && rx_payload_buffer[0] > 0) {
if (rx_fifo_push_rfbuf(rfp, (uint8_t)NRF_RADIO->TXADDRESS, 0)) {
rfp->flags |= NRF52_INT_RX_DR_MSK;
}
}
chBSemSignal(&events_sem);
if ((tx_fifo.count == 0) || (rfp->config.tx_mode == NRF52_TXMODE_MANUAL)) {
rfp->state = NRF52_STATE_IDLE;
}
else {
start_tx_transaction(rfp);
}
}
else {
if (rfp->tx_remaining-- == 0) {
rfp->timer->TASKS_STOP = 1;
NRF_PPI->CHENCLR = (1 << NRF52_RADIO_PPI_TX_START);
// All retransmits are expended, and the TX operation is suspended
rfp->tx_attempt = rfp->config.retransmit.count + 1;
rfp->flags |= NRF52_INT_TX_FAILED_MSK;
chBSemSignal(&events_sem);
rfp->state = NRF52_STATE_IDLE;
}
else {
// There are still have more retransmits left, TX mode should be
// entered again as soon as the system timer reaches CC[1].
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_RXEN_Msk;
set_rf_payload_format(rfp, p_current_payload->length);
NRF_RADIO->PACKETPTR = (uint32_t)tx_payload_buffer;
rfp->state = NRF52_STATE_PTX_TX_ACK;
rfp->timer->TASKS_START = 1;
NRF_PPI->CHENSET = (1 << NRF52_RADIO_PPI_TX_START);
if (rfp->timer->EVENTS_COMPARE[1])
NRF_RADIO->TASKS_TXEN = 1;
}
}
}
static void clear_events_restart_rx(RFDriver *rfp) {
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON;
set_rf_payload_format(rfp, rfp->config.payload_length);
NRF_RADIO->PACKETPTR = (uint32_t)rx_payload_buffer;
NRF_RADIO->INTENCLR = RADIO_INTENCLR_DISABLED_Msk;
NRF_RADIO->EVENTS_DISABLED = 0;
(void) NRF_RADIO->EVENTS_DISABLED;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
NRF_RADIO->EVENTS_DISABLED = 0;
(void) NRF_RADIO->EVENTS_DISABLED;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_TXEN_Msk;
NRF_RADIO->TASKS_RXEN = 1;
}
static void on_radio_disabled_rx(RFDriver *rfp) {
bool ack = false;
bool retransmit_payload = false;
bool send_rx_event = true;
pipe_info_t * p_pipe_info;
if (NRF_RADIO->CRCSTATUS == 0) {
clear_events_restart_rx(rfp);
return;
}
if(rx_fifo.count >= NRF52_RX_FIFO_SIZE) {
clear_events_restart_rx(rfp);
return;
}
p_pipe_info = &rx_pipe_info[NRF_RADIO->RXMATCH];
if (NRF_RADIO->RXCRC == p_pipe_info->m_crc &&
(rx_payload_buffer[1] >> 1) == p_pipe_info->m_pid ) {
retransmit_payload = true;
send_rx_event = false;
}
p_pipe_info->m_pid = rx_payload_buffer[1] >> 1;
p_pipe_info->m_crc = NRF_RADIO->RXCRC;
if(rfp->config.selective_auto_ack == false || ((rx_payload_buffer[1] & 0x01) == 0))
ack = true;
if(ack) {
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_RXEN_Msk;
switch(rfp->config.protocol) {
case NRF52_PROTOCOL_ESB_DPL:
{
if (tx_fifo.count > 0 &&
(tx_fifo.p_payload[tx_fifo.exit_point]->pipe == NRF_RADIO->RXMATCH))
{
// Pipe stays in ACK with payload until TX fifo is empty
// Do not report TX success on first ack payload or retransmit
if (p_pipe_info->m_ack_payload != 0 && !retransmit_payload) {
if(++tx_fifo.exit_point >= NRF52_TX_FIFO_SIZE) {
tx_fifo.exit_point = 0;
}
tx_fifo.count--;
// ACK payloads also require TX_DS
// (page 40 of the 'nRF24LE1_Product_Specification_rev1_6.pdf').
rfp->flags |= NRF52_INT_TX_SUCCESS_MSK;
}
p_pipe_info->m_ack_payload = 1;
p_current_payload = tx_fifo.p_payload[tx_fifo.exit_point];
set_rf_payload_format(rfp, p_current_payload->length);
tx_payload_buffer[0] = p_current_payload->length;
memcpy(&tx_payload_buffer[2],
p_current_payload->data,
p_current_payload->length);
}
else {
p_pipe_info->m_ack_payload = 0;
set_rf_payload_format(rfp, 0);
tx_payload_buffer[0] = 0;
}
tx_payload_buffer[1] = rx_payload_buffer[1];
}
break;
case NRF52_PROTOCOL_ESB:
{
set_rf_payload_format(rfp, 0);
tx_payload_buffer[0] = rx_payload_buffer[0];
tx_payload_buffer[1] = 0;
}
break;
}
rfp->state = NRF52_STATE_PRX_SEND_ACK;
NRF_RADIO->TXADDRESS = NRF_RADIO->RXMATCH;
NRF_RADIO->PACKETPTR = (uint32_t)tx_payload_buffer;
}
else {
clear_events_restart_rx(rfp);
}
if (send_rx_event) {
// Push the new packet to the RX buffer and trigger a received event if the operation was
// successful.
if (rx_fifo_push_rfbuf(rfp, NRF_RADIO->RXMATCH, p_pipe_info->m_pid)) {
rfp->flags |= NRF52_INT_RX_DR_MSK;
chBSemSignal(&events_sem);
}
}
}
static void on_radio_disabled_rx_ack(RFDriver *rfp) {
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_TXEN_Msk;
set_rf_payload_format(rfp, rfp->config.payload_length);
NRF_RADIO->PACKETPTR = (uint32_t)rx_payload_buffer;
rfp->state = NRF52_STATE_PRX;
}
nrf52_error_t radio_disable(void) {
RFD1.state = NRF52_STATE_IDLE;
// Clear PPI
NRF_PPI->CHENCLR = (1 << NRF52_RADIO_PPI_TIMER_START) |
(1 << NRF52_RADIO_PPI_TIMER_STOP) |
(1 << NRF52_RADIO_PPI_RX_TIMEOUT);
reset_fifo();
memset(rx_pipe_info, 0, sizeof(rx_pipe_info));
memset(pids, 0, sizeof(pids));
// Disable the radio
NRF_RADIO->SHORTS = RADIO_SHORTS_READY_START_Enabled << RADIO_SHORTS_READY_START_Pos |
RADIO_SHORTS_END_DISABLE_Enabled << RADIO_SHORTS_END_DISABLE_Pos;
nvicDisableVector(RADIO_IRQn);
// Terminate interrupts handle thread
chThdTerminate(rfIntThread_p);
chBSemSignal(&disable_sem);
chThdWait(rfIntThread_p);
// Terminate events handle thread
chThdTerminate(rfEvtThread_p);
RFD1.flags = 0;
chBSemSignal(&events_sem);
chThdWait(rfEvtThread_p);
RFD1.state = NRF52_STATE_UNINIT;
return NRF52_SUCCESS;
}
//
nrf52_error_t radio_init(nrf52_config_t const *config) {
osalDbgAssert(config != NULL,
"config must be defined");
osalDbgAssert(&config->address != NULL,
"address must be defined");
osalDbgAssert(NRF52_RADIO_IRQ_PRIORITY <= 7,
"wrong radio irq priority");
if (RFD1.state != NRF52_STATE_UNINIT) {
nrf52_error_t err = radio_disable();
if (err != NRF52_SUCCESS)
return err;
}
RFD1.radio = NRF_RADIO;
RFD1.config = *config;
RFD1.flags = 0;
init_fifo();
#if NRF52_RADIO_USE_TIMER0
RFD1.timer = NRF_TIMER0;
#endif
#if NRF52_RADIO_USE_TIMER1
RFD1.timer = NRF_TIMER1;
#endif
#if NRF52_RADIO_USE_TIMER2
RFD1.timer = NRF_TIMER2;
#endif
#if NRF52_RADIO_USE_TIMER3
RFD1.timer = NRF_TIMER3;
#endif
#if NRF52_RADIO_USE_TIMER4
RFD1.timer = NRF_TIMER4;
#endif
set_parameters(&RFD1);
set_addresses(&RFD1, NRF52_ADDR_UPDATE_MASK_BASE0);
set_addresses(&RFD1, NRF52_ADDR_UPDATE_MASK_BASE1);
set_addresses(&RFD1, NRF52_ADDR_UPDATE_MASK_PREFIX);
ppi_init(&RFD1);
timer_init(&RFD1);
chBSemObjectInit(&disable_sem, TRUE);
chBSemObjectInit(&events_sem, TRUE);
chEvtObjectInit(&RFD1.eventsrc);
// interrupt handle thread
rfIntThread_p = chThdCreateStatic(waRFIntThread, sizeof(waRFIntThread),
NRF52_RADIO_INTTHD_PRIORITY, rfIntThread, NULL);
// events handle thread
rfEvtThread_p = chThdCreateStatic(waRFEvtThread, sizeof(waRFEvtThread),
NRF52_RADIO_EVTTHD_PRIORITY, rfEvtThread, NULL);
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
RFD1.state = NRF52_STATE_IDLE;
return NRF52_SUCCESS;
}
nrf52_error_t radio_write_payload(nrf52_payload_t const * p_payload) {
if (RFD1.state == NRF52_STATE_UNINIT)
return NRF52_INVALID_STATE;
if(p_payload == NULL)
return NRF52_ERROR_NULL;
VERIFY_PAYLOAD_LENGTH(p_payload);
if (tx_fifo.count >= NRF52_TX_FIFO_SIZE)
return NRF52_ERROR_INVALID_LENGTH;
if (RFD1.config.mode == NRF52_MODE_PTX &&
p_payload->noack && !RFD1.config.selective_auto_ack )
{
return NRF52_ERROR_NOT_SUPPORTED;
}
nvicDisableVector(RADIO_IRQn);
memcpy(tx_fifo.p_payload[tx_fifo.entry_point], p_payload, sizeof(nrf52_payload_t));
pids[p_payload->pipe] = (pids[p_payload->pipe] + 1) % (NRF52_PID_MAX + 1);
tx_fifo.p_payload[tx_fifo.entry_point]->pid = pids[p_payload->pipe];
if (++tx_fifo.entry_point >= NRF52_TX_FIFO_SIZE) {
tx_fifo.entry_point = 0;
}
tx_fifo.count++;
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
if (RFD1.config.mode == NRF52_MODE_PTX &&
RFD1.config.tx_mode == NRF52_TXMODE_AUTO &&
RFD1.state == NRF52_STATE_IDLE)
{
start_tx_transaction(&RFD1);
}
return NRF52_SUCCESS;
}
nrf52_error_t radio_read_rx_payload(nrf52_payload_t * p_payload) {
if (RFD1.state == NRF52_STATE_UNINIT)
return NRF52_INVALID_STATE;
if (p_payload == NULL)
return NRF52_ERROR_NULL;
if (rx_fifo.count == 0) {
return NRF52_ERROR_INVALID_LENGTH;
}
nvicDisableVector(RADIO_IRQn);
p_payload->length = rx_fifo.p_payload[rx_fifo.exit_point]->length;
p_payload->pipe = rx_fifo.p_payload[rx_fifo.exit_point]->pipe;
p_payload->rssi = rx_fifo.p_payload[rx_fifo.exit_point]->rssi;
p_payload->pid = rx_fifo.p_payload[rx_fifo.exit_point]->pid;
memcpy(p_payload->data, rx_fifo.p_payload[rx_fifo.exit_point]->data, p_payload->length);
if (++rx_fifo.exit_point >= NRF52_RX_FIFO_SIZE) {
rx_fifo.exit_point = 0;
}
rx_fifo.count--;
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
return NRF52_SUCCESS;
}
nrf52_error_t radio_start_tx(void) {
if (RFD1.state != NRF52_STATE_IDLE)
return NRF52_ERROR_BUSY;
if (tx_fifo.count == 0) {
return NRF52_ERROR_INVALID_LENGTH;
}
start_tx_transaction(&RFD1);
return NRF52_SUCCESS;
}
nrf52_error_t radio_start_rx(void) {
if (RFD1.state != NRF52_STATE_IDLE)
return NRF52_ERROR_BUSY;
NRF_RADIO->INTENCLR = 0xFFFFFFFF;
NRF_RADIO->EVENTS_DISABLED = 0;
(void) NRF_RADIO->EVENTS_DISABLED;
NRF_RADIO->SHORTS = RADIO_SHORTS_COMMON | RADIO_SHORTS_DISABLED_TXEN_Msk;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
RFD1.state = NRF52_STATE_PRX;
NRF_RADIO->RXADDRESSES = RFD1.config.address.rx_pipes;
NRF_RADIO->FREQUENCY = RFD1.config.address.rf_channel;
NRF_RADIO->PACKETPTR = (uint32_t)rx_payload_buffer;
nvicClearPending(RADIO_IRQn);
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
NRF_RADIO->EVENTS_ADDRESS = 0;
NRF_RADIO->EVENTS_PAYLOAD = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
(void) NRF_RADIO->EVENTS_ADDRESS;
(void) NRF_RADIO->EVENTS_PAYLOAD;
(void) NRF_RADIO->EVENTS_DISABLED;
NRF_RADIO->TASKS_RXEN = 1;
return NRF52_SUCCESS;
}
nrf52_error_t radio_stop_rx(void) {
if (RFD1.state != NRF52_STATE_PRX) {
return NRF52_INVALID_STATE;
}
NRF_RADIO->SHORTS = 0;
NRF_RADIO->INTENCLR = 0xFFFFFFFF;
NRF_RADIO->EVENTS_DISABLED = 0;
(void) NRF_RADIO->EVENTS_DISABLED;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
RFD1.state = NRF52_STATE_IDLE;
return NRF52_SUCCESS;
}
nrf52_error_t radio_flush_tx(void) {
if (RFD1.state == NRF52_STATE_UNINIT)
return NRF52_INVALID_STATE;
nvicDisableVector(RADIO_IRQn);
tx_fifo.count = 0;
tx_fifo.entry_point = 0;
tx_fifo.exit_point = 0;
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
return NRF52_SUCCESS;
}
nrf52_error_t radio_pop_tx(void) {
if (RFD1.state == NRF52_STATE_UNINIT)
return NRF52_INVALID_STATE;
if (tx_fifo.count == 0)
return NRF52_ERROR_INVALID_LENGTH;
nvicDisableVector(RADIO_IRQn);
if (++tx_fifo.entry_point >= NRF52_TX_FIFO_SIZE) {
tx_fifo.entry_point = 0;
}
tx_fifo.count--;
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
return NRF52_SUCCESS;
}
nrf52_error_t radio_flush_rx(void) {
if (RFD1.state == NRF52_STATE_UNINIT)
return NRF52_INVALID_STATE;
nvicDisableVector(RADIO_IRQn);
rx_fifo.count = 0;
rx_fifo.entry_point = 0;
rx_fifo.exit_point = 0;
memset(rx_pipe_info, 0, sizeof(rx_pipe_info));
nvicEnableVector(RADIO_IRQn, NRF52_RADIO_IRQ_PRIORITY);
return NRF52_SUCCESS;
}
nrf52_error_t radio_set_base_address_0(uint8_t const * p_addr) {
if (RFD1.state != NRF52_STATE_IDLE)
return NRF52_ERROR_BUSY;
if (p_addr == NULL)
return NRF52_ERROR_NULL;
memcpy(RFD1.config.address.base_addr_p0, p_addr, 4);
set_addresses(&RFD1, NRF52_ADDR_UPDATE_MASK_BASE0);
return NRF52_SUCCESS;
}
nrf52_error_t radio_set_base_address_1(uint8_t const * p_addr) {
if (RFD1.state != NRF52_STATE_IDLE)
return NRF52_ERROR_BUSY;
if (p_addr == NULL)
return NRF52_ERROR_NULL;
memcpy(RFD1.config.address.base_addr_p1, p_addr, 4);
set_addresses(&RFD1, NRF52_ADDR_UPDATE_MASK_BASE1);
return NRF52_SUCCESS;
}
nrf52_error_t radio_set_prefixes(uint8_t const * p_prefixes, uint8_t num_pipes) {
if (RFD1.state != NRF52_STATE_IDLE)
return NRF52_ERROR_BUSY;
if (p_prefixes == NULL)
return NRF52_ERROR_NULL;
if (num_pipes > 8)
return NRF52_ERROR_INVALID_PARAM;
memcpy(RFD1.config.address.pipe_prefixes, p_prefixes, num_pipes);
RFD1.config.address.num_pipes = num_pipes;
RFD1.config.address.rx_pipes = BIT_MASK_UINT_8(num_pipes);
set_addresses(&RFD1, NRF52_ADDR_UPDATE_MASK_PREFIX);
return NRF52_SUCCESS;
}
nrf52_error_t radio_set_prefix(uint8_t pipe, uint8_t prefix) {
if (RFD1.state != NRF52_STATE_IDLE)
return NRF52_ERROR_BUSY;
if (pipe > 8)
return NRF52_ERROR_INVALID_PARAM;
RFD1.config.address.pipe_prefixes[pipe] = prefix;
NRF_RADIO->PREFIX0 = bytewise_bit_swap(&RFD1.config.address.pipe_prefixes[0]);
NRF_RADIO->PREFIX1 = bytewise_bit_swap(&RFD1.config.address.pipe_prefixes[4]);
return NRF52_SUCCESS;
}