home-automation/arduino/Weather_Shield_Basic/Weather_Shield_Basic.ino

187 lines
5.9 KiB
C++

/*
Weather Shield Example
By: Nathan Seidle
SparkFun Electronics
Date: June 10th, 2016
License: This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license).
This example prints the current humidity, air pressure, temperature and light levels.
The weather shield is capable of a lot. Be sure to checkout the other more advanced examples for creating
your own weather station.
*/
#include <ArduinoJson.h>
#include <Wire.h> //I2C needed for sensors
#include "SparkFunMPL3115A2.h" //Pressure sensor - Search "SparkFun MPL3115" and install from Library Manager
#include "SparkFunHTU21D.h" //Humidity sensor - Search "SparkFun HTU21D" and install from Library Manager
MPL3115A2 myPressure; //Create an instance of the pressure sensor
HTU21D myHumidity; //Create an instance of the humidity sensor
//Hardware pin definitions
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
const byte STAT_BLUE = 7;
const byte STAT_GREEN = 8;
const byte REFERENCE_3V3 = A3;
const byte LIGHT = A1;
const byte BATT = A2;
//Global Variables
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
long lastSecond; //The millis counter to see when a second rolls by
void setup()
{
Serial.begin(9600);
pinMode(STAT_BLUE, OUTPUT); //Status LED Blue
pinMode(STAT_GREEN, OUTPUT); //Status LED Green
pinMode(REFERENCE_3V3, INPUT);
pinMode(LIGHT, INPUT);
//Configure the pressure sensor
myPressure.begin(); // Get sensor online
myPressure.setModeBarometer(); // Measure pressure in Pascals from 20 to 110 kPa
myPressure.setOversampleRate(7); // Set Oversample to the recommended 128
myPressure.enableEventFlags(); // Enable all three pressure and temp event flags
//Configure the humidity sensor
myHumidity.begin();
lastSecond = millis();
digitalWrite(STAT_GREEN, HIGH); //Signal online / active status
}
void loop()
{
//Print readings every 10 seconds
if (millis() - lastSecond >= 10000)
{
digitalWrite(STAT_BLUE, HIGH); //Blink stat LED
lastSecond += 10000;
//Check Humidity Sensor
float humidity = myHumidity.readHumidity();
if (humidity == ERROR_I2C_TIMEOUT) //Humidty sensor failed to respond
{
Serial.println("I2C communication to sensors is not working. Check solder connections.");
//Try re-initializing the I2C comm and the sensors
myPressure.begin();
myPressure.setModeBarometer();
myPressure.setOversampleRate(7);
myPressure.enableEventFlags();
myHumidity.begin();
}
else
{
DynamicJsonDocument jsonBuffer(1024);
jsonBuffer["humidity_percent"] = humidity; // %
float temp_h = myHumidity.readTemperature();
jsonBuffer["temp_c"] = temp_h; // C
//Check Pressure Sensor
float pressure = myPressure.readPressure();
jsonBuffer["pressure_pa"] = pressure; // Pa
//Check tempf from pressure sensor
float tempf = myPressure.readTempF();
jsonBuffer["temp_f"] = tempf; // F
//Heat Index
float hi = heatIndex(tempf, humidity);
jsonBuffer["hi_f"] = hi; // F
jsonBuffer["hi_c"] = convertFtoC(hi); // C
//Check light sensor
float light_lvl = get_light_level();
jsonBuffer["light_lvl_v"] = light_lvl; // V
//Check batt level
float batt_lvl = get_battery_level();
jsonBuffer["batt_lvl_v"] = batt_lvl; // V
// Print json sensor data
serializeJson(jsonBuffer, Serial);
Serial.println();
}
digitalWrite(STAT_BLUE, LOW); //Turn off stat LED
}
delay(100);
}
//Returns the voltage of the light sensor based on the 3.3V rail
//This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V)
float get_light_level()
{
float operatingVoltage = analogRead(REFERENCE_3V3);
float lightSensor = analogRead(LIGHT);
operatingVoltage = 3.3 / operatingVoltage; //The reference voltage is 3.3V
lightSensor = operatingVoltage * lightSensor;
return (lightSensor);
}
//Returns the voltage of the raw pin based on the 3.3V rail
//This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V)
//Battery level is connected to the RAW pin on Arduino and is fed through two 5% resistors:
//3.9K on the high side (R1), and 1K on the low side (R2)
float get_battery_level()
{
float operatingVoltage = analogRead(REFERENCE_3V3);
float rawVoltage = analogRead(BATT);
operatingVoltage = 3.30 / operatingVoltage; //The reference voltage is 3.3V
rawVoltage = operatingVoltage * rawVoltage; //Convert the 0 to 1023 int to actual voltage on BATT pin
rawVoltage *= 4.90; //(3.9k+1k)/1k - multiple BATT voltage by the voltage divider to get actual system voltage
return (rawVoltage);
}
float convertFtoC(float f) {
return (f - 32) * 0.55555;
}
float heatIndex(float temperature, float percentHumidity)
{
float hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) + (percentHumidity * 0.094));
if (hi > 79) {
hi = -42.379 +
2.04901523 * temperature +
10.14333127 * percentHumidity +
-0.22475541 * temperature * percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature * pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
if ((percentHumidity < 13) && (temperature >= 80.0) && (temperature <= 112.0))
hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
else if ((percentHumidity > 85.0) && (temperature >= 80.0) && (temperature <= 87.0))
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
}
return hi;
}